1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vilka [71]
2 years ago
9

If the square root of x square + nine equal to x +1 solve for x

Mathematics
1 answer:
Blizzard [7]2 years ago
3 0

Answer:

Simplify square root of x^2-9

√

x

2

−

9

Rewrite

9

as

3

2

.

√

x

2

−

3

2

Since both terms are perfect squares, factor using the difference of squares formula,

a

2

−

b

2

=

(

a

+

b

)

(

a

−

b

)

where

a

=

x

and

b

=

3

.

√

(

x

+

3

)

(

x

−

3

)

You might be interested in
I'm confused. Can someone help me?
yanalaym [24]

Answer: BOC is 80 COD is

60 (i think I’m not sure)

Step-by-step explanation:

DOF is 120 minus 40 (cuz it’s a vertical angle and is parallel from the other one) is 80 and I got 60 for COD because 80+80+40+40=240 a circle is 360 so 360-240=120 and since it’s two vertical angles you have to divide it by 2 to get 60. Again thts only what I think so Idk if it’s right or not this is what I think the answer is.

6 0
4 years ago
How many liters are equal to 3,521 milliliter
Elena L [17]
There are 3.521 liters in 3521 milliliters
8 0
4 years ago
Consider the three points ( 1 , 3 ) , ( 2 , 3 ) and ( 3 , 6 ) . Let ¯ x be the average x-coordinate of these points, and let ¯ y
loris [4]

Answer:

m=\dfrac{3}{2}

Step-by-step explanation:

Given points are: ( 1 , 3 ) , ( 2 , 3 ) and ( 3 , 6 )

The average of x-coordinate will be:

\overline{x} = \dfrac{x_1+x_2+x_3}{\text{number of points}}

<u>1) Finding (\overline{x},\overline{y})</u>

  • Average of the x coordinates:

\overline{x} = \dfrac{1+2+3}{3}

\overline{x} = 2

  • Average of the y coordinates:

similarly for y

\overline{y} = \dfrac{3+3+6}{3}

\overline{y} = 4

<u>2) Finding the line through (\overline{x},\overline{y}) with slope m.</u>

Given a point and a slope, the equation of a line can be found using:

(y-y_1)=m(x-x_1)

in our case this will be

(y-\overline{y})=m(x-\overline{x})

(y-4)=m(x-2)

y=mx-2m+4

this is our equation of the line!

<u>3) Find the squared vertical distances between this line and the three points.</u>

So what we up till now is a line, and three points. We need to find how much further away (only in the y direction) each point is from the line.  

  • Distance from point (1,3)

We know that when x=1, y=3 for the point. But we need to find what does y equal when x=1 for the line?

we'll go back to our equation of the line and use x=1.

y=m(1)-2m+4

y=-m+4

now we know the two points at x=1: (1,3) and (1,-m+4)

to find the vertical distance we'll subtract the y-coordinates of each point.

d_1=3-(-m+4)

d_1=m-1

finally, as asked, we'll square the distance

(d_1)^2=(m-1)^2

  • Distance from point (2,3)

we'll do the same as above here:

y=m(2)-2m+4

y=4

vertical distance between the two points: (2,3) and (2,4)

d_2=3-4

d_2=-1

squaring:

(d_2)^2=1

  • Distance from point (3,6)

y=m(3)-2m+4

y=m+4

vertical distance between the two points: (3,6) and (3,m+4)

d_3=6-(m+4)

d_3=2-m

squaring:

(d_3)^2=(2-m)^2

3) Add up all the squared distances, we'll call this value R.

R=(d_1)^2+(d_2)^2+(d_3)^2

R=(m-1)^2+4+(2-m)^2

<u>4) Find the value of m that makes R minimum.</u>

Looking at the equation above, we can tell that R is a function of m:

R(m)=(m-1)^2+4+(2-m)^2

you can simplify this if you want to. What we're most concerned with is to find the minimum value of R at some value of m. To do that we'll need to derivate R with respect to m. (this is similar to finding the stationary point of a curve)

\dfrac{d}{dm}\left(R(m)\right)=\dfrac{d}{dm}\left((m-1)^2+4+(2-m)^2\right)

\dfrac{dR}{dm}=2(m-1)+0+2(2-m)(-1)

now to find the minimum value we'll just use a condition that \dfrac{dR}{dm}=0

0=2(m-1)+2(2-m)(-1)

now solve for m:

0=2m-2-4+2m

m=\dfrac{3}{2}

This is the value of m for which the sum of the squared vertical distances from the points and the line is small as possible!

5 0
3 years ago
There are 7 students at the math club picnic. If 4 students are drinking punch and 3 are drinking lemonade , what fraction are d
otez555 [7]

Answer:

3/7

Step-by-step explanation:

Total students: 7

Amount drinking lemonade: 3

So, 3 out of 7 students are drinking lemonade, or 3/7.

7 0
3 years ago
Read 2 more answers
Find the value of x. The angle measures of a right triangle are <br>x°<br>8x°​
lianna [129]

Answer:

x equals 10

Step-by-step explanation:

All triangles have 180 degrees

The bottom left angle is a right angle and is therefore 90°

That leaves us with x+8x=90°

9x=90°

x=10°

8 0
3 years ago
Read 2 more answers
Other questions:
  • Determine whether the improper integral converges or diverges, and find the value of each that converges.
    5·1 answer
  • I need how to solve this question?
    10·2 answers
  • What is 2√54+5√24 in simplified radical form? Enter your answer in the box.
    8·1 answer
  • What is 6/9 simplified?
    8·2 answers
  • If there are 18 boys in a class of 34,what percent of the class are boys?
    12·2 answers
  • PLEASE HELP!!!
    14·1 answer
  • What it 18.93 in radical form
    11·1 answer
  • 4x^3 +5x+10 divided by 2x+3 equals
    14·2 answers
  • NO LINKS AND DO NOT ANSWER IF U DO NOT KNOW BECAUSE I AM GIVING A LOT OF POINTS AGAIN DONT ANSWER IF YOU DONT KNOW
    11·2 answers
  • Please help meee........
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!