Answer:
most likely d, she's a chemist so she works with chemicals and substances akin to them
Answer:
In a particular case of secondary succession, three species of wild grass all invaded a field. By the second season, a single species dominated the field and the other two species had a lower relative abundance. A possible factor contributing to the abundances of these species in this example of secondary succession is <u>inhibition</u>.
Explanation:
Trees are great examples of allelopathy in plants. Some use their allelochemicals to inhibit germination or impede development of nearby plant life. Most allelopathic trees release these chemicals through their leaves, which are toxic once absorbed by other plants. Black walnut is a prime example of this.
Answer:
C)
Explanation:
separation of the enzyme and the products of the reaction.
The question is incomplete. The complete question is:
In pea plants, yellow pod color is recessive and green pod color is dominant. A heterozygous plant produced offspring with a plant that is homozygous dominant for the trait. What is a percent chance that the pea plant will have green pods.
Answer:
100%
Explanation:
Let's assume that the allele "G" gives green pod color while the allele "g" imparts yellow color to the pods. The genotype of the heterozygous plant would be "Gg". A cross between heterozygous green plant (Gg) with homozygous dominant (GG) plant would produce progeny in following ratio=
Gg x GG= 1/2 GG (green): 1/2 Gg (green)
Therefore, there are 100% chances that the progeny plant will have green pods.