Answer:
a) d²y/dx² = ½ x + y − ½
b) Relative minimum
Step-by-step explanation:
a) Take the derivative with respect to x.
dy/dx = ½ x + y − 1
d²y/dx² = ½ + dy/dx
d²y/dx² = ½ + (½ x + y − 1)
d²y/dx² = ½ x + y − ½
b) At (0, 1), the first and second derivatives are:
dy/dx = ½ (0) + (1) − 1
dy/dx = 0
d²y/dx² = ½ (0) + (1) − ½
d²y/dx² = ½
The first derivative is 0, and the second derivative is positive (concave up). Therefore, the point is a relative minimum.
Step-by-step explanation:
P(t) = 12,000 (2)^(-t/15)
9,000 = 12,000 (2)^(-t/15)
0.75 = 2^(-t/15)
ln(0.75) = ln(2^(-t/15))
ln(0.75) = (-t/15) ln(2)
-15 ln(0.75) / ln(2) = t
t = 6.23
Answer:
B) x = e^x
Step-by-step explanation:
The graphs of y = e^x and y = x never intersect, so the solution set will be the empty (null) set for ...
x = e^x
_____
There is one intersection of y=x with cos(x) and with sin(x). There are an infinite number of solutions for x = tan(x).
8+7=15
300/15=20
8 x 20 =160 Boys
7 x 20 = 140 girls
140 + 160 = 300
Hope this helps!
Answer:
4.4
Step-by-step explanation:
4 5/13 = 4 + 5/13 = 4 + 0.384615... = 4.384615...
Answer: 4.4