1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
fiasKO [112]
2 years ago
11

Brad, Stella, and Gilbert want to get a thank you gift for Maria. They will split the cost evenly. They buy 6 roses at $2.15 eac

h and a box of chocolates for $7.90. The store has a "no sales tax" day.
Brad estimates the cost per person to be $8. Is this reasonable?
A yes or no

Stella estimates the cost per person to be $7. Is this reasonable?
B yes or no

Gilbert estimates the cost per person to be $6. Is this reasonable?
C yes or no
Mathematics
1 answer:
Keith_Richards [23]2 years ago
5 0

Answer: Stella has a reasonable Answer

Step-by-step explanation:

When you add up all of the Costs, you get an answer of $20.80

You Divide $20.80 by 3

And you get your answer of 6.93333

Which estimates around 7 dollars making Stella Right!

Hope this helps :)

You might be interested in
What is the measure of ∠A, to the nearest degree?<br> 17°<br> 33°<br> 57°<br> 73°
DiKsa [7]
17 I think but idk for sure
7 0
3 years ago
Read 2 more answers
Dani gets a student loan to go to college. If he pays $750 in interest at a rate of 3% after 10 years, how much must the loan ha
Fudgin [204]

Answer:

The loan must have been $2500 originally. i think

5 0
4 years ago
15.30 find the inverse laplace transform of: 1. (a) f1(s) = 6s 2 8s 3 s(s 2 2s 5) 2. (b) f2(s) = s 2 5s 6 (s 1) 2 (s 4) 3. (c) f
EleoNora [17]

The solution of the inverse Laplace transforms is mathematically given as

  • f_{1}(t)=e^{-t}\sin (2 t)
  • f_{2}(t)=\frac{7}{9} e^{-t}+\frac{2}{3} e^{-t}+\frac{2}{9} e^{-4 t}
  • f_{3}(t)=2 e^{-t}-2 e^{-2 t} \cos (2 t)-e^{-2 t} \sin (2 t)

<h3>What is  the inverse Laplace transform?</h3>

1)

Generally, the equation for the function is  mathematically given as

$F_{1}(s)=\frac{6 s^{2}+8 s+3}{s\left(s^{2}+2 s+5\right)}$

By Applying the Partial fractions method

\frac{6 s^{2}+8 s+3}{s\left(s^{2}+2 s+5\right)}=\frac{A}{s}+\frac{B s+C}{s^{2}+2 s+5}

$6 s^{2}+8 s+3=A\left(s^{2}+2 s+5\right)+(B s+C) s$

\begin{aligned}&3=5 A \\&A=\frac{3}{5}\end{aligned}

Considers s^2 coefficient

\begin{aligned}&6=A+B \\&B=6 \cdot A \\&B=\frac{27}{5}\end{aligned}

Consider s coeffici ent

\begin{aligned}&8=2 A+C \\&C=8-2 A \\&C=\frac{34}{5}\end{aligned}

Putting these values into the previous equation

&F_{1}(s)=\frac{3}{5 s}+\frac{27 s+34}{5\left(s^{2}+2 s+5\right)} \\\\&F_{1}(s)=\frac{3}{5 s}+\frac{27(s+1)}{5\left((s+1)^{2}+4\right)}+\frac{7 \times 2}{10\left((s+1)^{2}+4\right)}

By taking Inverse Laplace Transforms

f_{1}(t)=\frac{3}{5}+\frac{27}{5} e^{-t} \cos (2t) + \frac{7}{10}\\\\

f_{1}(t)=e^{-t}\sin (2 t)

For B

$F_{2}(s)=\frac{s^{2}+5 s+6}{(s+4)(s+1)^{2}}$

By Applying Partial fractions method

\begin{aligned}&\frac{s^{2}+5 s+6}{(s+4)(s+1)^{2}}=\frac{A}{s+1}+\frac{B}{(s+1)^{2}}+\frac{C}{s+4} \\\\&s^{2}+5 s+6=A(s+1)(s+4)+B(s+4)+C(s+1)^{2}\end{aligned}

at s=-1

1-5+6=3 B \\\\B=\frac{2}{3}

at s=-4

&16-20+6=9 C \\\\&9 C=2 \\\\&C=\frac{2}{9}

at s^2 coefficient

1=A+C

A=1-C

A=7/9

inputting Variables into the Previous Equation

\begin{aligned}&F_{2}(s)=\frac{A}{s+1}+\frac{B}{(s+1)^{2}}+\frac{C}{s+4} \\&F_{2}(s)=\frac{7}{9(s+1)}+\frac{2}{3(s+1)^{2}}+\frac{2}{9(s+4)}\end{aligned}

By taking Inverse Laplace Transforms

f_{2}(t)=\frac{7}{9} e^{-t}+\frac{2}{3} e^{-t}+\frac{2}{9} e^{-4 t}

For C

$F_{3}(s)=\frac{10}{(s+1)\left(s^{2}+4 s+8\right)}$

Using the strategy of Partial Fractions

\frac{10}{(s+1)\left(s^{2}+4 s+8\right)}=\frac{A}{s+1}+\frac{B s+C}{s^{2}+4 s+8}

10=A\left(s^{2}+4 s+8\right)+(B s+C)(s+1)

S=-1

10=(1-4+8) A

A=10/5

A=2

Consider constants

10=8 A+C

C=10-8 A

C=10-16

C=-6

Considers s^2 coefficient

0=A+B

B=-A

B=-2

inputting Variables into the Previous Equation

&F_{3}(s)=\frac{2}{s+1}+\frac{-2 s-6}{\left((s+2)^{2}+4\right)} \\\\&F_{3}(s)=\frac{2}{s+1}-\frac{2(s+2)}{\left((s+2)^{2}+4\right)}-\frac{2}{\left((s+2)^{2}+4\right)}

Inverse Laplace Transforms

f_{3}(t)=2 e^{-t}-2 e^{-2 t} \cos (2 t)-e^{-2 t} \sin (2 t)

Read more about Laplace Transforms

brainly.com/question/14487937

#SPJ4

3 0
2 years ago
Find the slope and reduce.<br> P=(-3, -4) Q=(5, -1)<br> ?<br> Slope =<br> Enter
arsen [322]

Answer:

Slope is 3/8

Step-by-step explanation:

( -1 + 4)/ (5 + 3)

3/ 8

8 0
4 years ago
Use algebra to solve 3x+4 = 1/x<br> The exact solutions are x=<br> Х
skad [1K]

Answer:

Ignore the A before the ±, it wouldn't let me type it correctly.

x=\frac{2±\sqrt{7}  }{3}

Step-by-step explanation:

3x + 4 = 1 ÷ x

3x + 4 - 4 = 1 ÷ x - 4

3x = 1 ÷ x - 4

3x=\frac{1}{x} +\frac{x(-4)}{x}

3x=\frac{1+x(-4)}{x}

3x=\frac{1-4x}{x}

x(3x)=x(\frac{1-4x}{x})

x · 3x = - 4x + 1

3x² = - 4x + 1

3x² - (- 4x + 1) = 0

3x² + 4x - 1 = 0

Ignore the A before the ±, it wouldn't let me type it correctly.

x=\frac{-b±\sqrt{b^{2}-4ac } }{2a}

a = 3

b = 4

c = - 1

x=\frac{-4±\sqrt{4^{2}-4((3)(-1)) } }{2(3)}

x=\frac{-4±\sqrt{16-4((3)(-1)) } }{2(3)}

x=\frac{-4±\sqrt{16+12 } }{2(3)}

x=\frac{-4±\sqrt{28 } }{2(3)}

x=\frac{-4±\sqrt{(2)(14) } }{2(3)}

x=\frac{-4±\sqrt{(2)(2)(7) } }{2(3)}

x=\frac{-4±\sqrt{2 } \sqrt{2}\sqrt{7}  }{2(3)}

x=\frac{-4±2\sqrt{7}  }{2(3)}

x=\frac{-4±2\sqrt{7}  }{6}

Two separate equations

x=\frac{-4+2\sqrt{7}  }{6}

x=\frac{2+\sqrt{7}  }{3}

x=\frac{-4-2\sqrt{7}  }{6}

x=\frac{2-\sqrt{7}  }{3}

7 0
3 years ago
Other questions:
  • What times what equals 46
    13·2 answers
  • Draw a figure with the given perimeter 10 units
    11·1 answer
  • A square ceiling has a diagonal of 23 ft. Shelton wants to put molding around the perimeter of the ceiling. The molding is sold
    7·2 answers
  • Find perimeter and area of figure
    6·1 answer
  • Quick math help please ty!
    9·1 answer
  • mr. stevens asked four students in his math class to find the least common multiple of 4 and 6. Grace answered 2, Lyra answered
    11·1 answer
  • I need help please.
    6·1 answer
  • Can someone tell me the exact answer to this question pls and thank you I will give brainliest
    15·1 answer
  • What is the reciprocal of 1/6
    10·1 answer
  • Classify angle 2 &amp; 3 as an angle of depression or elevation
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!