If you're asking for the number of digits smaller than 13 in the bag:12
Answer:
Both of these examples are wrong. You cannot add/subtract integers and square roots together, however, you could add square roots together if they have the same number under the square root. For example, 2 - 2√6 will stay as 2 - 2√6 because they aren't like terms. 25 + 5√5 + 5√5 + 5 = 30 + 10√5 because 25 + 5 = 30 and 5√5 + 5√5 = 10√5. We can add 5√5 and 5√5 together because they have the same number under the square root. If we were to compute √2 + √3, we would just leave it as is because they don't have the same number under the square root.
Answer:
(0, -3)
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality<u>
</u>
<u>Algebra I</u>
- Terms/Coefficients
- Coordinates (x, y)
- Solving systems of equations using substitution/elimination
Step-by-step explanation:
<u>Step 1: Define Systems</u>
6x - 5y = 15
x = y + 3
<u>Step 2: Solve for </u><em><u>y</u></em>
<em>Substitution</em>
- Substitute in <em>x</em>: 6(y + 3) - 5y = 15
- Distribute 6: 6y + 18 - 5y = 15
- Combine like terms: y + 18 = 15
- [Subtraction Property of Equality] Subtract 18 on both sides: y = -3
<u>Step 3: Solve for </u><em><u>x</u></em>
- Define original equation: x = y + 3
- Substitute in <em>y</em>: x = -3 + 3
- Add: x = 0
Answer:
A. 10
Step-by-step explanation:
First put the numbers in order from least to greatest then find the two numbers in the center of that since there is an even number of numbers there will be two the add and divide by two and you get 10.
1,2,7,9,11,15,19,20
9+11=20
20/2=10
Complete Question
The complete question is shown on the first uploaded image
Answer:
1

2

3

4

Step-by-step explanation:
Generally the area of a sector is mathematically represented as

Now at
and 


Now at
in and 


Now at
and 


Now at
and 

