1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gnesinka [82]
2 years ago
6

Find (f+g)(x)f(x) = 4x−4 and g(x)=2x2−3x

Mathematics
2 answers:
skad [1K]2 years ago
8 0

Answer:

(f + g)(x) = 2x² + x - 4

Step-by-step explanation:

f(x) = 4x - 4

g(x) = 2x² - 3x

(f + g)(x) is the sum of functions f(x) and g(x).

(f + g)(x) = f(x) + g(x)

(f + g)(x) = 4x - 4 + 2x² - 3x

Combine like terms.

(f + g)(x) = 2x² + x - 4

marusya05 [52]2 years ago
5 0

The resulting expression for the sum of the function is 2x^2 - x - 4

<h3>Sum of function</h3>

Given the following function as shown below;

f(x) = 4x - 4

g(x) = 2x^2 - 3x

We are to determine the composite function (f+g)(x)

Substitute

(f+g)(x) = f(x) + g(x)

(f+g)(x) =. 4x-4 + 2x^2 -3x

(f+g)(x) = 2x^2 - x - 4

Hence the resulting expression for the sum of the function is 2x^2 - x - 4

Learn more on sum of function here: brainly.com/question/11602229

#SPJ1

You might be interested in
To find the measure of ∠A in ∆ABC, use the___(Pythagorean Theorem, Law of Sines, Law of Cosines). To find the length of side HI
nadya68 [22]

<u>Part 1) </u>To find the measure of ∠A in ∆ABC, use

we know that

In the triangle ABC

Applying the law of sines

\frac{a}{sin\ A}=\frac{b}{sin\ B}=\frac{c}{sin\ C}

in this problem we have

\frac{a}{sin\ A}=\frac{b}{sin\ theta}\\ \\a*sin\ theta=b*sin\ A\\ \\ sin\ A=\frac{a*sin\ theta}{b} \\ \\ A=arc\ sin (\frac{a*sin\ theta}{b})

therefore

<u>the answer  Part 1) is</u>

Law of Sines

<u>Part 2) </u>To find the length of side HI in ∆HIG, use

we know that

In the triangle HIG

Applying the law of cosines

g^{2}=h^{2}+i^{2}-2*h*i*cos\ G

In this problem we have

g=HI

G=angle Beta

substitute

HI^{2}=h^{2}+i^{2}-2*h*i*cos\ Beta

HI=\sqrt{h^{2}+i^{2}-2*h*i*cos\ Beta}

therefore

<u>the answer Part 2) is</u>

Law of Cosines

3 0
3 years ago
Read 2 more answers
<img src="https://tex.z-dn.net/?f=%5Clim_%7Bx%5Cto%20%5C%200%7D%20%5Cfrac%7B%5Csqrt%7Bcos2x%7D-%5Csqrt%5B3%5D%7Bcos3x%7D%20%7D%7
salantis [7]

Answer:

\displaystyle  \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)} = \frac{1}{2}

General Formulas and Concepts:

<u>Calculus</u>

Limits

Limit Rule [Variable Direct Substitution]:                                                                     \displaystyle \lim_{x \to c} x = c

L'Hopital's Rule

Differentiation

  • Derivatives
  • Derivative Notation

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

We are given the limit:

\displaystyle  \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)}

When we directly plug in <em>x</em> = 0, we see that we would have an indeterminate form:

\displaystyle  \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)} = \frac{0}{0}

This tells us we need to use L'Hoptial's Rule. Let's differentiate the limit:

\displaystyle  \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)} = \displaystyle  \lim_{x \to 0} \frac{\frac{-sin(2x)}{\sqrt{cos(2x)}} + \frac{sin(3x)}{[cos(3x)]^{\frac{2}{3}}}}{2xcos(x^2)}

Plugging in <em>x</em> = 0 again, we would get:

\displaystyle \lim_{x \to 0} \frac{\frac{-sin(2x)}{\sqrt{cos(2x)}} + \frac{sin(3x)}{[cos(3x)]^{\frac{2}{3}}}}{2xcos(x^2)} = \frac{0}{0}

Since we reached another indeterminate form, let's apply L'Hoptial's Rule again:

\displaystyle \lim_{x \to 0} \frac{\frac{-sin(2x)}{\sqrt{cos(2x)}} + \frac{sin(3x)}{[cos(3x)]^{\frac{2}{3}}}}{2xcos(x^2)} = \lim_{x \to 0} \frac{\frac{-[cos^2(2x) + 1]}{[cos(2x)]^{\frac{2}{3}}} + \frac{cos^2(3x) + 2}{[cos(3x)]^{\frac{5}{3}}}}{2cos(x^2) - 4x^2sin(x^2)}

Substitute in <em>x</em> = 0 once more:

\displaystyle \lim_{x \to 0} \frac{\frac{-[cos^2(2x) + 1]}{[cos(2x)]^{\frac{2}{3}}} + \frac{cos^2(3x) + 2}{[cos(3x)]^{\frac{5}{3}}}}{2cos(x^2) - 4x^2sin(x^2)} = \frac{1}{2}

And we have our final answer.

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Limits

6 0
3 years ago
I am confused at how to solve this question.
MrRissso [65]
110 yards        1 mile            3600 sec
-------------- * ----------------- * -------------- = 14 miles per hour      (answer)
 16 sec         1760 yards        1 hr
3 0
4 years ago
1.64 points as a mix number in simplest form
zhuklara [117]
The correct answer is 41/25
8 0
3 years ago
Solve the system of equations for (x, y) using inverse matrices.
taurus [48]
Let’s see..................

5 0
3 years ago
Other questions:
  • Mary rolls two dice. She adds the numbers on the two dice. What is the chance of this sum being twelve?
    8·2 answers
  • Only the math gods can write this 50 PT proof!
    12·1 answer
  • c) A large solar panel is designed to have multiple smaller sections. A small section of one panel is pictured below. Imagine it
    7·1 answer
  • Mr. Smith gets a bonus of $100. He buys new shoes for $59.00. He want to buy new sock too. Each pair of socks cost $5.00. How ma
    6·2 answers
  • 65 inches is how many feet? (Round to nearest hundredth) *
    13·2 answers
  • Need help please ASAP
    7·1 answer
  • James has worked full time as an entry-level web designer since earning his certification. He
    14·1 answer
  • HELP what’s the answer
    10·2 answers
  • Find the difference -4 -5​
    6·1 answer
  • Square ABCD is divided into 5 rectangles that all have the same area. FH = 20 and CK = KD. Find the length of BE.
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!