False because you in comepare and coaiser
Answer:
24 cubes
Step-by-step explanation:
You can figure this a couple of ways.
I usually find it easiest to figure in terms of the number of cubes each dimension represents. The vertical dimension (3/2 cm) is the length of 3 cubes; the front-back dimension (2 cm) is the length of 4 cubes, and the width (1 cm) is the length of 2 cubes.
The total number of cubes required is the product of the dimensions in cube-lengths: 3×4×2 = 24 cubes.
__
Another way to figure this is to compute the prism volume in the given dimensions (cm³) and the cube volume in the same dimensions, then find the number of cube volumes in the prism volume.
Prism volume = l×w×h = (2 cm)(1 cm)(3/2 cm) = 3 cm³
Cube volume = (1/2 cm)³ = 1/8 cm³
Then the number of cubes that will fit in the prism is ...
(3 cm³)/(1/8 cm³) = 3×8 = 24 . . . . cubes
In this case, we'll have to carry out several steps to find the solution.
Step 01:
Data
f(x) = √3x
g(x) = √48x
(f . g)(x) = ?
Step 02:
(f . g)(x) :
![\text{ (f.g)(x) = }\sqrt[]{3(\sqrt[]{48x)}}](https://tex.z-dn.net/?f=%5Ctext%7B%20%20%20%20%20%20%20%20%20%20%28f.g%29%28x%29%20%3D%20%7D%5Csqrt%5B%5D%7B3%28%5Csqrt%5B%5D%7B48x%29%7D%7D)
![(f.g)(x)\text{ = }\sqrt[]{3(48x)^{\frac{1}{2}}}\text{ }](https://tex.z-dn.net/?f=%28f.g%29%28x%29%5Ctext%7B%20%3D%20%7D%5Csqrt%5B%5D%7B3%2848x%29%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%7D%5Ctext%7B%20%7D)
(f.g)(x) = 12 √ x
The answer is:
(f.g)(x) = 12 √ x
Answer:
When k(x) is 2x² - 5x + 3, k(-3) = 36.
Step-by-step explanation:
k(x) = 2x² - 5x + 3
Substitute the input of x.
k(-3) = 2(-3)² - 5(-3) + 3
Square -3.
k(-3) = 2(9) - 5(-3) + 3
Multiply 2 and 9.
k(-3) = 18 - 5(-3) + 3
Multiply -5 and -3.
k(-3) = 18 + 15 + 3
Add 18 and 15.
k(-3) = 33 + 3
Add 33 and 3.
k(-3) = 36.