1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ipn [44]
2 years ago
6

There are white, blue, and red boats in a marina. Five-sixths of the boats in the marina are white,

Mathematics
1 answer:
klasskru [66]2 years ago
3 0
120 , I think ......................
You might be interested in
Can you please Help me solve 4c < 28
meriva

Answer:

4c < 28

divide by 4 both sides

x < 7

3 0
2 years ago
Amanda has an envelope that is 2 1/4 inches tall. The envelope is 4 1/3 times as long as it is tall. How long is her envelope?
Sidana [21]

Answer:

its 2 1/2 its width

Step-by-step explanation:

4 0
2 years ago
If your ex liked your video but hasn’t all those times you broke up and he’s now likeing one of my videos but hasn’t those times
ruslelena [56]

Answer:well im not sure

Step-by-step explanation:

8 0
3 years ago
1. Approximate the given quantity using a Taylor polynomial with n3.
Jet001 [13]

Answer:

See the explanation for the answer.

Step-by-step explanation:

Given function:

f(x) = x^{1/4}

The n-th order Taylor polynomial for function f with its center at a is:

p_{n}(x) = f(a) + f'(a) (x-a)+\frac{f''(a)}{2!} (x-a)^{2} +...+\frac{f^{(n)}a}{n!} (x-a)^{n}

As n = 3  So,

p_{3}(x) = f(a) + f'(a) (x-a)+\frac{f''(a)}{2!} (x-a)^{2} +...+\frac{f^{(3)}a}{3!} (x-a)^{3}

p_{3}(x) = f(a) + f'(a) (x-a)+\frac{f''(a)}{2!} (x-a)^{2} +...+\frac{f^{(3)}a}{6} (x-a)^{3}

p_{3}(x) = a^{1/4} + \frac{1}{4a^{ 3/4} }  (x-a)+ (\frac{1}{2})(-\frac{3}{16a^{7/4} } ) (x-a)^{2} +  (\frac{1}{6})(\frac{21}{64a^{11/4} } ) (x-a)^{3}

p_{3}(x) = 81^{1/4} + \frac{1}{4(81)^{ 3/4} }  (x-81)+ (\frac{1}{2})(-\frac{3}{16(81)^{7/4} } ) (x-81)^{2} +  (\frac{1}{6})(\frac{21}{64(81)^{11/4} } ) (x-81)^{3}

p_{3} (x) = 3 + 0.0092592593 (x - 81) + 1/2 ( - 0.000085733882) (x - 81)² + 1/6  

                                                                                  (0.0000018522752) (x-81)³

p_{3} (x)  =  0.0092592593 x - 0.000042866941 (x - 81)² + 0.00000030871254

                                                                                                       (x-81)³ + 2.25

Hence approximation at given quantity i.e.

x = 94

Putting x = 94

p_{3} (94)  =  0.0092592593 (94) - 0.000042866941 (94 - 81)² +          

                                                                 0.00000030871254 (94-81)³ + 2.25

         = 0.87037 03742 - 0.000042866941 (13)² + 0.00000030871254(13)³ +    

                                                                                                                       2.25

         = 0.87037 03742 - 0.000042866941 (169) +  

                                                                      0.00000030871254(2197) + 2.25

         = 0.87037 03742 - 0.007244513029 + 0.0006782414503 + 2.25

p_{3} (94)  = 3.113804102621

Compute the absolute error in the approximation assuming the exact value is given by a calculator.

Compute \sqrt[4]{94} as 94^{1/4} using calculator

Exact value:

E_{a}(94) = 3.113737258478

Compute absolute error:

Err = | 3.113804102621 - 3.113737258478 |

Err (94)  = 0.000066844143

If you round off the values then you get error as:

|3.11380 - 3.113737| = 0.000063

Err (94)  = 0.000063

If you round off the values up to 4 decimal places then you get error as:

|3.1138 - 3.1137| = 0.0001

Err (94)  = 0.0001

4 0
3 years ago
the number y of calories burned after x hours of rock climbing is represented by the linear function y=650x find the domain , is
Flauer [41]

Answer:

The domain is discrete

Step-by-step explanation:

Given

y = 650x

Required

What type of domain is it?

<em>Based on the given options, the domain is continuous.</em>

From the question, we understand that x represents the hours spent in climbing the rock.

The climber can decide to climb for 1 hour, 2 hours, ½ hour, ⅓ hour, ¼ hour, etc..

A domain is said to be discrete if it can only take integers (i.e. whole numbers), if otherwise, it is continuous;

So, since x is not limited to only whole numbers, then we can conclude that the domain of x is continuous

3 0
3 years ago
Other questions:
  • Odd numbers are always divisible by 2
    15·1 answer
  • Which expression has the same value as 59.2 subtract 84.7
    14·1 answer
  • Cement pillars for a porch or 2 feet wide, 2 feet thick, and 8 feet tall, there are six pillars in all what is the total volume
    15·1 answer
  • Identify the coefficient in the expression 2(1+x) after it is expanded.
    13·1 answer
  • Jess wants to build the birdhouse shown. She bought a 25​-inch by 50​-inch sheet of plywood. Does Jess have enough wood to make
    15·1 answer
  • 4(x+1)m divided by 2
    7·1 answer
  • A store sells 3 cans of beans for $9. What is the price of 7 cans of beans?
    11·1 answer
  • Cuanto vale d+2c-(3a-2b) si a=2,b=-3,c=1,d=-2
    9·1 answer
  • Jasmine found a wooden jewelry box shaped like a right rectangular prism. What is the volume of the jewelry box?
    15·1 answer
  • Are the triangles similar?
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!