Answer:
4.5
Step-by-step explanation:
∠BAC ~ ∠EDF means that the triangles are similar. So the legs of the triangle share the same proportions, even if the sizes are different.
Since they share the same proportions, the same operations can be performed on each base to find the area.
The answer can be found with the knowledge that the area of a triangle is half of the height * width. You know the width of ∠BAC is 4, and the area is 8, so 16 (the area doubled) / 4 is the height. The width and height of ∠BAC are the same, and since the proportions are also the same, the width and height of ∠EDF are both 3. So the area is the width (3) times the height (3) divided by 2.
3*3 = 9
9/2 = 4.5
So the area is 4.5
Answer:
Given the function: y=f(x) = 3x+2
when x=-2 at the beginning of the interval [-2, 5],
then;
y = 3x+2 begins at
y= 3(-2)+2 = -6+2= -4.
and
when x=5 at the end of the interval [-2, 5],
y = 3x+2 ends up at
y= 3(5)+2 = 15+2= 17.
So,
y has changed -4 to 17, which is a change of 17-(-4)= 17+4 = 21
and x has changed from -2 to 5, which is a change of 5-(-2)=5+2=7
So, the average rate of change of y with respect to x over the interval
[-2, 5] is given by ;
=
Therefore, the average rate of change y with respect to x over the interval is, 3
Step-by-step explanation:
Answer:
-20/13 <g
Step-by-step explanation:
-7–5(3g+8)<10g–7+g
Distribute
-7–15g-40<10g–7+g
Combine like terms
-15g - 47 < 11g -7
Add 15 g to each side
-15g+15g -47< 11g+15g -7
-47 < 26g -7
Add 7 to each side
-47+7 < 26g-7+7
-40 < 26g
Divide each side by 26
-40/26 <26g/26
-40/26 <g
Divide top and bottom by 2
-20/13 <g
The values of x in the triangles and the angles in the rhombus are illustrations of tangent ratios
- The values of x in the triangles are 21.4 units, 58 degrees and 66 degrees
- The angles in the rhombus are 44 and 46 degrees, respectively
<h3>How to determine the values of x?</h3>
<u>Triangle 1</u>
The value of x is calculated using the following tangent ratio
tan(25) = 10/x
Make x the subject
x = 10/tan(25)
Evaluate
x = 21.4
<u>Triangle 2</u>
The value of x is calculated using the following tangent ratio
tan(x) = 8/5
Evaluate the quotient
tan(x) = 1.6
Take the arc tan of both sides
x = arctan(1.6)
Evaluate
x = 58
<u>Triangle 3</u>
The value of x is calculated using the following tangent ratio
tan(x) = 0.34/0.15
Evaluate the quotient
tan(x) = 2.27
Take the arc tan of both sides
x = arctan(2.27)
Evaluate
x = 66
<h3>How to calculate the angles of the rhombus?</h3>
The lengths of the diagonals are:
L1 = 2 in
L2 = 5 in
Represent the angles with x and y.
The measures of the angles are calculated using the following tangent ratios
tan(0.5x) = 2/5 and y = 90 - x
Evaluate the quotient
tan(0.5x) = 0.4
Take the arc tan of both sides
0.5x = arctan(0.4)
Evaluate
0.5x = 22
Divide by 0.5
x = 44
Recall that:
y = 90 - x
This gives
y = 90 - 44
Evaluate
y = 46
Hence, the angles in the rhombus are 44 and 46 degrees, respectively
Read more about tangent ratio at:
brainly.com/question/13347349