The equation represents the magnitude of an earthquake that is 10 times more intense than a standard earthquake is
.
Given
The magnitude, M, of an earthquake is defined to be M = log StartFraction I Over S EndFraction, where I is the intensity of the earthquake (measured by the amplitude of the seismograph wave) and S is the intensity of a "standard" earthquake, which is barely detectable.
<h3>The magnitude of an earthquake</h3>
The magnitude of an earthquake is a measure of the energy it releases.
For an earthquake with 1,000 times more intense than a standard earthquake.
The equation represents the magnitude of an earthquake that is 10 times more intense than a standard earthquake is;

Hence, the equation represents the magnitude of an earthquake that is 10 times more intense than a standard earthquake is
.
To know more about the magnitude of earthquakes click the link given below.
brainly.com/question/1337665
Answer: y=7x
Step-by-step explanation:
The way I did it was, I looked at the chart. The highest it goes is 30 and 210. So for your answer, you have to multiply. 7x30 gives you 210 and there y=7x
Answer:
The Possible model is binomial distribution model.
Step-by-step explanation:
The argument that both students cheated in the exam can be proved by a hypothesis that both the students got the same answers incorrectly.
The same incorrect answers prove that both students have cheated on the test.
Therefore the sample of incorrect answers is, n = 8
Thus, the success probability, P = 0.25
Since the given condition has only two outcomes that are choosing the same answer or not choosing the same answer. Thus, this can be solved by the binomial distribution model.
So, binomial distribution with n = 8 and p = 0 .25.
Both lines intersect at the point
(-0.5, 0.5)