1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
seropon [69]
3 years ago
8

Which of the following are always classified as a trapezoid? Select all that apply.

Mathematics
2 answers:
8090 [49]3 years ago
7 0

Answer:

everything except for a quadrilateral

Step-by-step explanation:

Zarrin [17]3 years ago
6 0
C d e anything with 4 sides
You might be interested in
The circumference of a circle is 26 pi what is the area in square inches of the circle
melisa1 [442]

circumference=

2\pi \: radius

26\pi = 2\pi \: raduis \:

\frac{26\pi}{2\pi}  = raduis

radius = 13

area of circle =

\pi {raduis}^{2}

area of circle=

\pi {13}^{2}

area of circle=

169\pi

8 0
3 years ago
PLEASE HELP
slava [35]

Answer:

\log(24)

Step-by-step explanation:

\log(8)+\log(3)=\log(8*3)=\log(24)

5 0
2 years ago
Una heladeria dispone de 20 frutas distintas para elaborar sus malteadas. Si los clientes pueden elegir tres sabores para mezcla
Dahasolnce [82]

Answer:

Existen 6840 permitaciones de malteadas de tres sabores distintos que la heladería puede ofrecer.

Step-by-step explanation:

En este caso, el cliente que adquiere una malteada de tres sabores distintos sigue el siguiente procedimiento:

1) El primer sabor sale de cualquiera de las 20 frutas disponibles.

2) El segundo sabor es distinto al primer sabor, es decir, que sale de las 19 frutas restantes.

3) El tercer sabor es distinto al primer sabor y al segundo sabor, es decir, que sale de las 18 frutas restantes.

Puesto que existe una doble conjunción y que puede importar el orden según la preferencia del cliente, se habla matemáticamente de una permutación, definida como:

n\mathbb{P}k = \frac{n!}{(n-k)!} (1)

Donde:

n - Número de sabores disponibles, adimensional.

k - Número de sabores escogidos, adimensional.

Si tenemos que n = 20 y k = 3, entonces la cantidad de malteadas de tres sabores distintos es:

n\mathbb{P}k = \frac{20!}{(20-3)!}

n\mathbb{P}k = \frac{20!}{17!}

n\mathbb{P}k = 20\cdot 19\cdot 18

n\mathbb{P}k = 6840

Existen 6840 permitaciones de malteadas de tres sabores distintos que la heladería puede ofrecer.

5 0
3 years ago
Please do first question AND HURRY.
sweet-ann [11.9K]
The picture is cut off. We can't solve :/
5 0
3 years ago
Graph The function f(x) = |2x −4|
Aliun [14]

Answer:this is an absolute value function is there more to the question

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
Other questions:
  • What is the equation of the line ?
    15·1 answer
  • X^2-x-12 in (x+p)(x+q) form
    8·2 answers
  • Two triangles can be formed with the given information. Use the Law of Sines to solve the triangles. B = 46°, a = 12, b = 11
    12·1 answer
  • Find the perimeter of a square whose diagonal is 8 feet. Round to the nearest tenth if needed.​
    9·1 answer
  • If there are 40 juice boxes and 2/5 are cranberry juice how many boxes are cranberry juice
    5·2 answers
  • Find the slope of the line passing through each of the following pairs of points. b (−3, 9), (−3, −5)
    8·2 answers
  • What is 8/32 times 14/21?
    14·1 answer
  • Opinion needed!!
    15·1 answer
  • During geography class students listed the number of the states they had visited.the responses were 12,9,17,7,5,4,2,1,8,5
    14·2 answers
  • How many rational numbers lie between any two fractions?<br>​
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!