Answer:
Acute angle, 85 degrees. That's my guess I hope it helps.
9514 1404 393
Answer:
$20.01
Step-by-step explanation:
In 2004–2012, the interest rate is 0.002%. In 2013, it is 0.004%. In 2014–2021, the interest rate is 0.002%. That is, in the 18 years between 2004 and 2021 (inclusive), the interest rate is 0.002% for 17 of them. The effective account multiplier is ...
(1.00002^17)(1.00004^1) = 1.00038006801
Then the account balance is ...
$20 × 1.00038006801 ≈ $20.01
_____
<em>Additional comment</em>
The annual interest earned on $20.00 is $0.0004. If the account balance is rounded to the nearest cent annually, at the end of the 18 years, the balance will still be $20.00. Not enough interest is earned in one year to increase the balance above $20. At the end of the 18 years, the amount of interest earned is 0.76¢ (a fraction of a penny) <em>only if there is no rounding in intervening years</em>.
Answer:
0.05547
Step-by-step explanation:
Given :
_____Peter __ Alan __ Sui__total
Before 1838 __ 418 ___1475 _3731
After _ 1420 __ 329 ___1140_2889
Total _3258 __ 747 __ 2615 _6620
The expected frequency = (Row total * column total) / N
N = grand total = 6620
Using calculator :
Expected values are :
1836.19 __ 421.006 __ 1473.8
1421.81 ___325.994__ 1141.2
χ² = Σ(Observed - Expected)² / Expected
χ² = (0.00177817 + 0.0214571 + 0.000974852 + 0.00229642 + 0.0277108 + 0.00125897)
χ² = 0.05547
Tenths is after the decimal so the tenths is 5.
The 21st term of the given arithmetic sequence is 83. The nth term of an arithmetic sequence is applied to find the required value where n = 21.
<h3>What is the nth term of an arithmetic series?</h3>
The nth term of an arithmetic sequence is calculated by the formula
aₙ = a + (n - 1) · d
Here the first term is 'a' and the common difference is 'd'.
<h3>Calculation:</h3>
The given sequence is an arithmetic sequence.
3, 7, 11, 15, 19, ....
So, the first term in the sequence is a = 3 and the common difference between the terms of the given sequence is d = 7 - 3 = 4.
Thus, the required 21st term in the sequence is
a₂₁ = 3 + (21 - 1) × 4
⇒ a₂₁ = 3 + 20 × 4
⇒ a₂₁ = 3 + 80
∴ a₂₁ = 83
So, the 21st term in the given arithmetic sequence is 83.
Learn more about the arithmetic sequence here:
brainly.com/question/6561461
#SPJ1