Answer:
91.14 feet
Step-by-step explanation:
Given:
In a park,a sidewalk is built around the edge of a circular pond.
The sidewalk is 7 feet wide, and the pond measure 15 feet across.
Question asked:
What amount of railing would be needed to go completely around the outer edge of the sidewalk?
Solution:
From distance from one edge of the pond to the another = 15 feet
That means diameter of the pond = 15 feet
And width of the sidewalk = 7 feet all around
combined diameter = 15 + 7 + 7 = 29 feet
Radius,r = 
That means distance between outer edge of the sidewalk to the center of the circular pond = 14.5 feet
Now, we will have to find circumference of outer circular edge of sidewalk:


Therefore, 91.14 feet would be needed to go around the outer edge of the sidewalk.
Answer:
see explanation
Step-by-step explanation:
(1)
Given
g(r) = (r + 14)² - 49
To obtain the zeros, let g(r) = 0 , that is
(r + 14)² - 49 = 0 ( add 49 to both sides )
(r + 14)² = 49 ( take the square root of both sides )
r + 14 = ±
= ± 7 ( subtract 14 from both sides )
r = - 14 ± 7, then
r = - 14 - 7 = - 21 ← smaller r
r = - 14 + 7 = - 7 ← larger r
(2)
The equation of a parabola in vertex form is
y = a(x - h)² + k
where (h, k) are the coordinates of the vertex and a is a multiplier
g(r) = (r + 14)² - 49 ← is in vertex form
with vertex = (- 14, - 49 )
Answer:
Im not sure how to be honest.
Step-by-step explanation:
Im not sure how to be honest.
Answer: 0.00562454
Step-by-step explanation:
Did I save you a lot of time? Lol hope I helped