If the flask shown in the diagram can be modeled as a combination of a sphere and a cylinder, then its volume is

Use following formulas to determine volumes of sphere and cylinder:
wher R is sphere's radius, r - radius of cylinder's base and h - height of cylinder.
Then
Answer 1: correct choice is C.
If both the sphere and the cylinder are dilated by a scale factor of 2, then all dimensions of the sphere and the cylinder are dilated by a scale factor of 2. So
R'=2R, r'=2r, h'=2h.
Write the new fask volume:

Then

Answer 2: correct choice is D.
Answer:
The length of segment AC is two times the length of segment A'C'
Step-by-step explanation:
we know that
If two figures are similar, then the ratio of its corresponding sides is proportional and this ratio is called the scale factor
Let
z ----> the scale factor
A'C' ----> the length of segment A'C'
AC ----> the length of segment AC
so
we have that
---> the dilation is a reduction, because the scale factor is less than 1 and greater than zero
substitute

therefore
The length of segment AC is two times the length of segment A'C'
The volume of a cone is = pi r^2 h/3
and the volume of the pyramid is = V= l w h/3
Hope this helps!
can I get a brainleist
1:100 because 20 divide by 20=1 and 2000 divide by 20 =100