

- <u>We </u><u>have </u><u>given </u><u>two </u><u>linear </u><u>equations </u><u>that</u><u> </u><u>is </u><u>2x </u><u>-</u><u> </u><u>3y </u><u>=</u><u> </u><u>-</u><u>6</u><u> </u><u>and </u><u>x</u><u> </u><u>+</u><u> </u><u>3y </u><u>=</u><u> </u><u>1</u><u>2</u><u> </u><u>.</u>

- <u>We </u><u>have </u><u>to </u><u>find </u><u>the </u><u>value </u><u>of </u><u>x </u><u>and </u><u>y </u><u>by </u><u>elimination </u><u>method</u><u>. </u>



<u>Multiply </u><u>eq(</u><u> </u><u>2</u><u> </u><u>)</u><u> </u><u>by </u><u>2</u><u> </u><u>:</u><u>-</u>


<u>Subtract </u><u>eq(</u><u>1</u><u>)</u><u> </u><u>from </u><u>eq(</u><u>2</u><u>)</u><u> </u><u>:</u><u>-</u>





<u>Now</u><u>, </u><u> </u><u>Subsitute</u><u> </u><u>the </u><u>value </u><u>of </u><u>y </u><u>in </u><u>eq(</u><u> </u><u>1</u><u> </u><u>)</u><u>:</u><u>-</u>





Hence, The value of x and y is 2 and 10/3
Im pretty sure its 4,771 but id double check with a calculator
X + 3 because in math two negatives equal a positive
y = mx + b
m = slope and b = y-intercept
We can arrange 6y = x - 12 in the form of y = mx + b
6y = x - 12
y = 1/6(x) - 2
Slope of y = 1/6(x) - 2 is 1/6. Taking the negative reciprocal of the slope we get the slope for the perpendicular line.
Negative reciprocal of 1/6 is -6.
The equation for the perpendicular line is
y = -6x + b
To find b we can plug in the x and y values of (4,-4) into it since it passes through those coordinates
-4 = -6(4) + b
b = -4 + 6(4)
b = -4 + 24
b = 20
So the equation for the perpendicular line is y = -6x + 20
Answer:
x=9
Step-by-step explanation:
The expression is for the interior angle of the hexagon; one interior angle is equal to .
Since an interior angle of a hexagon measures 120°, we have the equality
.
Now it is just a matter of solving for
11x=120-21
11x=99
x=99/11
x=9