Answer:
Like on a test if you get extra credit.
Step-by-step explanation:
so first off, let's simplify both equations, starting off by multiplying both sides by the LCD of all fractions, to do away with the denominators.
![\bf \cfrac{10(x-y)-4(1-x)}{3}=y\implies \stackrel{\textit{multiplying both sides by }\stackrel{LCD}{3}}{10(x-y)-4(1-x)=3y} \\\\\\ 10x-10y-4+4x=3y\implies \boxed{14x-13y=4} \\\\[-0.35em] ~\dotfill\\\\ 7+x-\cfrac{x-3y}{4}=2x-\cfrac{y+5}{3}\implies \stackrel{\textit{multiplying both sides by }\stackrel{LCD}{12}}{12\left( 7+x-\cfrac{x-3y}{4} \right)=12\left( 2x-\cfrac{y+5}{3} \right)} \\\\\\ 84+12x-3(x-3y)=24x-4(y+5) \\\\\\ 84+12x-3x+9y=24x-4y-20\implies \boxed{-15x+13y=-124}](https://tex.z-dn.net/?f=%5Cbf%20%5Ccfrac%7B10%28x-y%29-4%281-x%29%7D%7B3%7D%3Dy%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Bmultiplying%20both%20sides%20by%20%7D%5Cstackrel%7BLCD%7D%7B3%7D%7D%7B10%28x-y%29-4%281-x%29%3D3y%7D%20%5C%5C%5C%5C%5C%5C%2010x-10y-4%2B4x%3D3y%5Cimplies%20%5Cboxed%7B14x-13y%3D4%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%207%2Bx-%5Ccfrac%7Bx-3y%7D%7B4%7D%3D2x-%5Ccfrac%7By%2B5%7D%7B3%7D%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Bmultiplying%20both%20sides%20by%20%7D%5Cstackrel%7BLCD%7D%7B12%7D%7D%7B12%5Cleft%28%207%2Bx-%5Ccfrac%7Bx-3y%7D%7B4%7D%20%5Cright%29%3D12%5Cleft%28%202x-%5Ccfrac%7By%2B5%7D%7B3%7D%20%5Cright%29%7D%20%5C%5C%5C%5C%5C%5C%2084%2B12x-3%28x-3y%29%3D24x-4%28y%2B5%29%20%5C%5C%5C%5C%5C%5C%2084%2B12x-3x%2B9y%3D24x-4y-20%5Cimplies%20%5Cboxed%7B-15x%2B13y%3D-124%7D)
now, let's do some elimination on those two simplified equations.
![\bf \begin{array}{cllcl} 14x&-13y&=&4\\ -15x&+13y&=&-124\\\cline{1-4} -x&&=&-120 \end{array}~\hfill x=\cfrac{-120}{-1}\implies \blacktriangleright x=120 \blacktriangleleft \\\\\\ \stackrel{\textit{substituting on the 1st equation}}{14(120)-13y=4}\implies 1680-13y=4\implies 1680-4=13y \\\\\\ 1676=13y\implies \blacktriangleright \cfrac{1676}{13}=y \blacktriangleleft \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill \left( 120~,~\frac{1676}{13} \right)~\hfill](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Barray%7D%7Bcllcl%7D%2014x%26-13y%26%3D%264%5C%5C%20-15x%26%2B13y%26%3D%26-124%5C%5C%5Ccline%7B1-4%7D%20-x%26%26%3D%26-120%20%5Cend%7Barray%7D~%5Chfill%20x%3D%5Ccfrac%7B-120%7D%7B-1%7D%5Cimplies%20%5Cblacktriangleright%20x%3D120%20%5Cblacktriangleleft%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bsubstituting%20on%20the%201st%20equation%7D%7D%7B14%28120%29-13y%3D4%7D%5Cimplies%201680-13y%3D4%5Cimplies%201680-4%3D13y%20%5C%5C%5C%5C%5C%5C%201676%3D13y%5Cimplies%20%5Cblacktriangleright%20%5Ccfrac%7B1676%7D%7B13%7D%3Dy%20%5Cblacktriangleleft%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20~%5Chfill%20%5Cleft%28%20120~%2C~%5Cfrac%7B1676%7D%7B13%7D%20%5Cright%29~%5Chfill)
Answer: Domain (-∞,∞) ; range: (0,∞)
Step-by-step explanation:
1. The exponential functions with the form
has domain of all real numbers, becaure there is no values in the set of real number for which the value of
is not define. When
approches to ∞, the function approches to ∞.
2. When
approches to -∞, the function approches to 0 but never touches it. This means that
is always greater than zero (
). Therefore, the range of the function is (0,∞).
Fractions equivalent to 1/4 are 2/8, 3/12, 4/16, 5/20