Yes, 23 has an inverse mod 1000 because gcd(23, 1000) = 1 (i.e. they are coprime).
Let <em>x</em> be the inverse. Then <em>x</em> is such that
23<em>x</em> ≡ 1 (mod 1000)
Use the Euclidean algorithm to solve for <em>x</em> :
1000 = 43×23 + 11
23 = 2×11 + 1
→ 1 ≡ 23 - 2×11 (mod 1000)
→ 1 ≡ 23 - 2×(1000 - 43×23) (mod 1000)
→ 1 ≡ 23 - 2×1000 + 86×23 (mod 1000)
→ 1 ≡ 87×23 - 2×1000 ≡ 87×23 (mod 1000)
→ 23⁻¹ ≡ 87 (mod 1000)
Answer:
m is slope. slope is where it touches the y-axis so it would be "0"
We will see that the probability of picking two orange marbles without replacement is 0.23
<h3>
How to get the probability?</h3>
If we assume that all the marbles have the same probability of being randomly picked, then the probability of getting an orange marble is given by the quotient between the number of orange marbles and the total number of marbles, this gives:
P = 6/12 = 1/2
And then we need to get another orange marble, without replacing the one we picked before, this time there are 5 orange marbles and 11 in total, so the probability is:
Q = 5/11
Finally, the joint probability (of these two events happening) is the product of the probabilities, so we get:
P*Q = (1/2)*(5/11) = 0.23
If you want to learn more about probability, you can read:
brainly.com/question/251701
Complement angles, sum is equal 90
Give one angle = 70 to find other: 90 - 70 = 20
Answer
Complement of angle with the measure of 70 degrees is 20 degrees
Answer:
ΔEFG is an isosceles triangle.
Step-by-step explanation:
Given:
E (0, 0),
F (−7, 4),
G (0, 8)
ΔEFG
Solution:
Distance formula
Distance d = 
Step 1: Finding the length of EF
By using distance formula,



Step 2: Finding the length of FG
By using distance formula,

Step 2: Finding the length of GE

Thus we could see that the sides EF = FG
So it is a isosceles triangle.