Determine whether the relation is a function. {(−3,−6),(−2,−4),(−1,−2),(0,0),(1,2),(2,4),(3,6)}
Gennadij [26K]
Answer:
The relation is a function.
Step-by-step explanation:
In order for the relation to be a function, every input must only have one output. Basically, you can't have 2 outputs for 1 input but you can have 2 inputs for 1 output. Looking at all of the points in the relation, we see that no input has multiple outputs, so the answer is yes, the relation is a function.
Answer:
B) 16
Step-by-step explanation:
We have h(t)=0, because the ball is on the ground.
So we have:
-8(2t-32)=0
2t-32=0
2t=32
t=16
It took 16 sec
Answer:
The inverse for log₂(x) + 2 is - log₂x + 2.
Step-by-step explanation:
Given that
f(x) = log₂(x) + 2
Now to find the inverse of any function we put we replace x by 1/x.
f(x) = log₂(x) + 2
f(1/x) =g(x)= log₂(1/x) + 2
As we know that
log₂(a/b) = log₂a - log₂b
g(x) = log₂1 - log₂x + 2
We know that log₂1 = 0
g(x) = 0 - log₂x + 2
g(x) = - log₂x + 2
So the inverse for log₂(x) + 2 is - log₂x + 2.
Answer:
is the required equation.
Therefore, the second option is true.
Step-by-step explanation:
We know that the slope-intercept form of the line equation of a linear function is given by

where m is the slope and b is the y-intercept
Taking two points (0, -2) and (1, 0) from the table to determine the slope using the formula




substituting the point (0, -2) and the slope m=2 in the slope-intercept form to determine the y-intercept i.e. 'b'.




Now, substituting the values of m=2 and b=-2 in the slope-intercept form to determine the equation of a linear function



Thus,
is the required equation.
Therefore, the second option is true.