1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AleksandrR [38]
2 years ago
12

Differentiate the following with respect to xirrelevant answers will be reported​

Mathematics
1 answer:
ale4655 [162]2 years ago
4 0

Answer:

\displaystyle y' = - \frac{e^{x^2 + 7} \sqrt{\csc 5x} \Bigg[ \bigg[ 5 \cot (5x) - 4x \bigg] \sin (3x + 4) - 6 \cos (3x + 4) \Bigg] }{2}

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:
\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:
\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]

Derivative Rule [Basic Power Rule]:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Product Rule]:
\displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Derivative Rule [Chain Rule]:
\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify.</em>

<em />\displaystyle y = e^{x^2 + 7} \sin (3x + 4) \sqrt{\csc (5x)}

<u>Step 2: Differentiate</u>

  1. Apply Derivative Rule [Product Rule]:
    \displaystyle y' = \big[ e^{x^2 + 7} \big]' \sin (3x + 4) \sqrt{\csc (5x)} + e^{x^2 + 7} \big[ \sin (3x + 4) \big]' \sqrt{\csc (5x)} + e^{x^2 + 7} \sin (3x + 4) \big[ \sqrt{\csc (5x)} \big]'
  2. Apply Exponential Differentiation [Derivative Rule - Chain Rule]:
    \displaystyle y' = e^{x^2 + 7} (x^2 + 7)' \sin (3x + 4) \sqrt{\csc (5x)} + e^{x^2 + 7} \big[ \sin (3x + 4) \big]' \sqrt{\csc (5x)} + e^{x^2 + 7} \sin (3x + 4) \big[ \sqrt{\csc (5x)} \big]'
  3. Apply Derivative Rules and Properties [Basic Power Rule + Addition/Subtraction]:
    \displaystyle y' = 2xe^{x^2 + 7} \sin (3x + 4) \sqrt{\csc (5x)} + e^{x^2 + 7} \big[ \sin (3x + 4) \big]' \sqrt{\csc (5x)} + e^{x^2 + 7} \sin (3x + 4) \big[ \sqrt{\csc (5x)} \big]'
  4. Apply Trigonometric Differentiation [Derivative Rule - Chain Rule]:
    \displaystyle y' = 2xe^{x^2 + 7} \sin (3x + 4) \sqrt{\csc (5x)} + e^{x^2 + 7} \cos (3x + 4) (3x + 4)' \sqrt{\csc (5x)} + e^{x^2 + 7} \sin (3x + 4) \big[ \sqrt{\csc (5x)} \big]'
  5. Apply Derivative Rules and Properties [Basic Power Rule + Addition/Subtraction]:
    \displaystyle y' = 2xe^{x^2 + 7} \sin (3x + 4) \sqrt{\csc (5x)} + 3e^{x^2 + 7} \cos (3x + 4) \sqrt{\csc (5x)} + e^{x^2 + 7} \sin (3x + 4) \big[ \sqrt{\csc (5x)} \big]'
  6. Apply Derivative Rules [Basic Power Rule + Chain Rule]:
    \displaystyle y' = 2xe^{x^2 + 7} \sin (3x + 4) \sqrt{\csc (5x)} + 3e^{x^2 + 7} \cos (3x + 4) \sqrt{\csc (5x)} + e^{x^2 + 7} \sin (3x + 4) \frac{\big[ \csc (5x) \big] '}{2\sqrt{\csc (5x)}}
  7. Apply Trigonometric Differentiation [Derivative Rule - Chain Rule]:
    \displaystyle y' = 2xe^{x^2 + 7} \sin (3x + 4) \sqrt{\csc (5x)} + 3e^{x^2 + 7} \cos (3x + 4) \sqrt{\csc (5x)} + e^{x^2 + 7} \sin (3x + 4) \frac{- \csc (5x) \cot (5x) (5x)'}{2\sqrt{\csc (5x)}}
  8. Apply Derivative Rules and Properties [Basic Power Rule + Multiplied Constant]:
    \displaystyle y' = 2xe^{x^2 + 7} \sin (3x + 4) \sqrt{\csc (5x)} + 3e^{x^2 + 7} \cos (3x + 4) \sqrt{\csc (5x)} + e^{x^2 + 7} \sin (3x + 4) \frac{-5 \csc (5x) \cot (5x)}{2\sqrt{\csc (5x)}}
  9. Rewrite:
    \displaystyle y' = - \frac{e^{x^2 + 7} \sqrt{\csc 5x} \Bigg[ \bigg[ 5 \cot (5x) - 4x \bigg] \sin (3x + 4) - 6 \cos (3x + 4) \Bigg] }{2}

∴ we have found the derivative of the function.

---

Learn more about differentiation: brainly.com/question/26836290
Learn more about calculus: brainly.com/question/23558817

---

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

You might be interested in
The value of the surface area (in square centimeters) of the cone is equal to the value of the volume (in cubic centimeters) of
dlinn [17]

Answer:361.28

Step-by-step explanation:

This problem is all about just plugging in the numbers.

(I will be using the letters Pi to represent the actual number)

(Pi+(5*2))+(Pi*5*25)

10Pi+105Pi

115Pi

(Around) 361.28

5 0
3 years ago
Can y’all plz help me
Zinaida [17]

Answer:

if you are using a GPS it would be absolute location

Step-by-step explanation:

4 0
3 years ago
How do you simplify-3(-6)
Olegator [25]
You multiply them and get
-3*-6= +18
5 0
3 years ago
Read 2 more answers
If <img src="https://tex.z-dn.net/?f=A%20%3D%20log_%7B5%7D2" id="TexFormula1" title="A = log_{5}2" alt="A = log_{5}2" align="abs
Zolol [24]

Answer:

2A+2B

Step-by-step explanation:

log_{5} 36=log_{5}(4*9)=log_{5}(2^{2}*3^{2})\\log_{5}(2^{2})+log_{5}(3^{2})=2log_{5}2+2log_{5}3=2A+2B

4 0
3 years ago
Leila is considering buying her first home. The house she is interested in buying is priced at $125,000. Leila can put down a $2
PIT_PIT [208]

Answer:

* The monthly mortgage payment is $629.53 ⇒ answer C

Step-by-step explanation:

* Lets explain how to solve the problem

- Leila is considering buying her first home

- The house she is interested in buying is priced at $125,000

∴ She can put $20000 down  payment

* Lets find the balance to be paid off on mortgage

∴ The balance = 125000 - 20000 = 105000

- She qualifies for a 30-year mortgage at 6%

* Lets find the rule of the monthly payment

∵ pmt=\frac{\frac{r}{n}[P(1+\frac{r}{n})^{tn}]}{(1+\frac{r}{n})^{tn}-1} , where  

- pmt is the monthly mortgage payment

- P = the initial amount  

- r = the annual interest rate (decimal)

- n = the number of times that interest is compounded per unit t

- t = the time the money is invested or borrowed for

∵ P = 105000

∵ r = 6/100 = 0.06

∵ n = 12

∵ t = 30

∴ pmt=\frac{\frac{0.06}{12}[105000(1+\frac{0.06}{12})^{30(12)}}{(1+\frac{0.06}{12})^{30(12)}-1}

∴  pmt=\frac{0.005[105000(1.005)^{360}]}{(1.005)^{360}-1} =629.528

* The monthly mortgage payment is $629.53

3 0
3 years ago
Read 2 more answers
Other questions:
  • Is the system of equations consistent, consistent and coincident, or inconsistent? y=3x+4y=3x+3
    7·1 answer
  • Sean drank 2 liters of water today which was 280 milliliters more than he drank yesterday. How much water did he drink yesterday
    5·1 answer
  • Create your own factorable polynomial with a GCF. Rewrite that polynomial in two other equivalent
    14·1 answer
  • (2,-1) x - 2y = 4 3x + y = 6 Determine if the coordinate is a solution to the equations.
    15·1 answer
  • #15 only please. thanks.
    15·1 answer
  • When x=1/2 least to greatest with 6x+1 ,x+1/2 ,-3x, and 2x-1/2 and -x
    12·1 answer
  • Consider these dimensions for a cylindrical aquarium.
    11·2 answers
  • What is (f - g)(x)?<br> f(x) = 3x?<br> g(x) = -x? + 4
    8·1 answer
  • What is 3 tenths plus 8 tenths?
    5·2 answers
  • How does understanding of 5 x 12 = 60 help to solve for the product of 5<br> x 120? Explain in words
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!