<h2>
Answer:</h2>
LP = 8 because LR + PR = LP according to the Segment Addition Postulate, and 8 + 4 = 12 using substitution
<h2>
Step-by-step explanation:</h2>
From this problem, we know that:
LR = 12
PR = 4
So here we have a Line segment. Recall that a line segment has two endpoints, places where they end or stop and they are named after their endpoints, so the line segment here is LR whose measure is 12. Then, according to Segment Addition Postulate it is true that:
LP + PR = LR
By substituting LR = 12 and PR = 4, we have:
LP + 4 = 12
Subtracting 4 from both sides:
LP + 4 - 4 = 12 - 4
LP + 0 = 8
Finally:
LP = 8
40/x=100/190 40/x=100/190
(40/x)*x=(100/190)*x
40=0.526315789474*x
(0.56315789474) to get x
40/0.536315789474=x
76=x
x=76 now we have 190% of 76
Answer:
x = 16.6
Step-by-step explanation:
Since we know the measure of an acute angle (31 degrees) of a right angle triangle, and of the side opposite to the angle (10), and we need to find the measure of the adjacent side "x", we use the tangent function:

which rounded to one decimal is
x = 16.6