Find the total cost of producing 5 widgets. Widget Wonders produces widgets. They have found that the cost, c(x), of making x widgets is a quadratic function in terms of x. The company also discovered that it costs $15.50 to produce 3 widgets, $23.50 to produce 7 widgets, and $56 to produce 12 widgets.
OK...so we have
a(7)^2 + b(7) + c = 23.50 → 49a + 7b + c = 23.50 (1)
a(3)^2 + b(3) + c = 15.50 → 9a + 3b + c = 15.50 subtracting the second equation from the first, we have
40a + 4b = 8 → 10a + b = 2 (2)
Also
a(12)^2 + b(12) + c = 56 → 144a + 12b + c = 56 and subtracting (1) from this gives us
95a + 5b = 32.50
And using(2) we have
95a + 5b = 32.50 (3)
10a + b = 2.00 multiplying the second equation by -5 and adding this to (3) ,we have
45a = 22.50 divide both sides by 45 and a = 1/2 and using (2) to find b, we have
10(1/2) + b = 2
5 + b = 2 b = -3
And we can use 9a + 3b + c = 15.50 to find "c"
9(1/2) + 3(-3) + c = 15.50
9/2 - 9 + c = 15.50
-4.5 + c = 15.50
c = 20
So our function is
c(x) = (1/2)x^2 - (3)x + 20
And the cost to produce 5 widgets is = $17.50
<h2>
Perfect Squares</h2>
Perfect square formula/rules:
Trinomials are often organized like
.
The <em>b</em> value in this case is <em>c</em>, and it will always equal the square of half of the <em>b</em> value.
- Perfect square trinomial:

- or

<h2>Solving the Question</h2>
We're given:
In a trinomial, we're given the
and
values. <em>a</em> in this case is 1 and <em>b</em> in this case is 4. To find the third value by dividing 4 by 2 and squaring the quotient:
Therefore, the term that we can add is + 4.

To write this as the square of a bracketed expression, we can follow the rule
:

<h2>Answer</h2>


Answer:
I know this is late but here
Slope = -1/25, y-intercept = 15
I can’t really explain it though
First you have to take the whole number (43) and then take the decimal and put it over 100 (77/100).
Answer:
14.45cm2
Step-by-step explanation:
The diagonal is the diameter of the circle.
4.6cm
The perimeter of the circle is
Pi x4.6= 3.142 * 4.6= 14.45cm2