1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lemur [1.5K]
3 years ago
8

Can someone help meeeeee

Mathematics
1 answer:
11Alexandr11 [23.1K]3 years ago
7 0

Answer:

Area of shaded rectangle = 42 cm²

55%

Step-by-step explanation:

The length of the shaded area is equal to the length of the white rectangle.

Therefore, length of shaded rectangle = 7 cm

The width of the shaded rectangle is equal to the length of the white rectangle <u>minus</u> two widths of the white rectangle.

Therefore, width = 7 - (2 x 0.5) = 6 cm

Area of shaded rectangle = width x length

                                          = 6 x 7

                                          = 42 cm²

----------------------------------------------------------------------------------------------

Perimeter of a square = 4 × side length

If the perimeter of the square is 40 cm,
then the side length = 40 ÷ 4 = 10 cm

Area of a square = side length x side length

⇒ area of this square = 10 x 10 = 100 cm²

To determine the shaded area, calculate the areas of the 2 white triangles and subtract these from the area of the square.

Area of a triangle = 1/2 x base x height

⇒ area of left triangle = 1/2 x (10 - 7) x 10 = 15 cm²

⇒ area of right triangle = 1/2 x 10 x (10 - 4) = 30 cm²

Therefore, shaded area = 100 - 15 - 30 = 55 cm²

To calculate the percentage, divide the shaded area by the area of the square and multiply by 100:

(55 ÷ 100) × 100% = 55%

You might be interested in
Can someone check whether its correct or no? this is supposed to be the steps in integration by parts​
Gwar [14]

Answer:

\displaystyle - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

Step-by-step explanation:

\boxed{\begin{minipage}{5 cm}\underline{Integration by parts} \\\\$\displaystyle \int u \dfrac{\text{d}v}{\text{d}x}\:\text{d}x=uv-\int v\: \dfrac{\text{d}u}{\text{d}x}\:\text{d}x$ \\ \end{minipage}}

Given integral:

\displaystyle -\int \dfrac{\sin(2x)}{e^{2x}}\:\text{d}x

\textsf{Rewrite }\dfrac{1}{e^{2x}} \textsf{ as }e^{-2x} \textsf{ and bring the negative inside the integral}:

\implies \displaystyle \int -e^{-2x}\sin(2x)\:\text{d}x

Using <u>integration by parts</u>:

\textsf{Let }\:u=\sin (2x) \implies \dfrac{\text{d}u}{\text{d}x}=2 \cos (2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

Therefore:

\begin{aligned}\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\sin (2x)- \int \dfrac{1}{2}e^{-2x} \cdot 2 \cos (2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\sin (2x)- \int e^{-2x} \cos (2x)\:\text{d}x\end{aligned}

\displaystyle \textsf{For }\:-\int e^{-2x} \cos (2x)\:\text{d}x \quad \textsf{integrate by parts}:

\textsf{Let }\:u=\cos(2x) \implies \dfrac{\text{d}u}{\text{d}x}=-2 \sin(2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

\begin{aligned}\implies \displaystyle -\int e^{-2x}\cos(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\cos(2x)- \int \dfrac{1}{2}e^{-2x} \cdot -2 \sin(2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x\end{aligned}

Therefore:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x

\textsf{Subtract }\: \displaystyle \int e^{-2x}\sin(2x)\:\text{d}x \quad \textsf{from both sides and add the constant C}:

\implies \displaystyle -2\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+\text{C}

Divide both sides by 2:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{4}e^{-2x}\sin (2x) +\dfrac{1}{4}e^{-2x}\cos(2x)+\text{C}

Rewrite in the same format as the given integral:

\displaystyle \implies - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

5 0
2 years ago
A helicopter flying 2,000 feet above the ground spots an airplane flying above. If the horizontal distance between the helicopte
soldi70 [24.7K]

Answer:

The answer- 1254ft

Step-by-step explanation:

You can do the calculator trick and get the answer and round to the tenth

8 0
3 years ago
Read 2 more answers
The length of a rectangle is 8 cm greater than its width. The perimeter is at most
noname [10]

Answer:

The length is 14 and the width is 6

3 0
4 years ago
PLEASE HELP WILL GIVE ANSWER BRAINLIEST
Rudiy27
Hi there! It's b hope this helps!
5 0
4 years ago
Read 2 more answers
How do o solve this equation? 4(3x - 10) + 7 = 15
Rama09 [41]
X=4 because first u distruste and add the numbers then add 33 to both side
5 0
3 years ago
Read 2 more answers
Other questions:
  • X+2=12<br><br> Willing to give brainliest to best answer with an explanation.
    5·2 answers
  • Y = mx + b to find the equation of the line that passes through the points (−6, 1) and (3, 4).
    8·1 answer
  • Simplify 12/ |-4| x3 + |5|
    14·1 answer
  • Taylor graphs the system below on her graphing calculator and decides that f(x)=g(x) at x=0, x=1, and x=3. Provide Taylor with s
    7·1 answer
  • URGENT PLS HELPPPPP
    5·1 answer
  • What is the area of a rectangle with vertices (-8, -2), (-3,-2).(-3,-8), and (-8, -B)?
    7·2 answers
  • In 92,542 what’s ten times that amount
    7·2 answers
  • 1/2(3/2y+1/3)=-1/2(y-5/2)
    12·1 answer
  • F(x)=x-5 y g(x)=3x+4 <br><br><br> Plis rapido
    14·1 answer
  • Please help!!!!! (worth 45 points)
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!