Since ABCD is a parallelogram, the opposite sides will be parallel and equal,

Consider that AC acts as a transversal to the parallel lines AB and CD, so we can write,

So by the ASA criteria, the triangle AED is congruent to the triangle CEB,
Then the corresponding parts of the triangles will be equal,

Hence Proved.
Answer:
2 hours at 15mph
4 hours at 4mph
Step-by-step explanation:
Answer:
Don't lisen to that the anwer is 0.3125
Step-by-step explanation:
Answer:
B. {16, 19, 20}
Step-by-step explanation:
The <em>triangle inequality</em> requires for any sides a, b, c you must have ...
a + b > c
b + c > a
c + a > b
The net result of those requirements are ...
- the sum of the two shortest sides must be greater than the longest side
- the length of the third side lies between the difference and sum of the other two sides
__
If we look at the offered side length choices, we see ...
A: 8+11 = 19 . . . not > 19; not a triangle
B: 16+19 = 35 > 20; could be a triangle
C: 3+4 = 7 . . . not > 8; not a triangle
D: 5+5 = 10 . . . not > 11; not a triangle
The side lengths {16, 19, 20} could represent the sides of a triangle.
_____
<em>Additional comment</em>
The version of triangle inequality shown above ensures that a triangle will have non-zero area.
The alternative version of the triangle inequality uses ≥ instead of >. Triangles where a+b=c will look like a line segment--they will have zero area. Many authors disallow this case. (If it were allowed, then {8, 11, 19} would also be a "triangle.")