Answer: 8 pages per minute
Step-by-step explanation:
24 / 3
Only 7 students have 2 class with mr.green
Since we do not know the population standard deviation, we will use the t-distribution to construct the 90% confidence interval of the mean number of books people read. The value of

with 1010 degrees of freedom and with alpha equals to 0.10 is 1.64
First, we need to solve for the margin of error, E.

The lower bound of the confidence interval is

The upper bound of the confidence interval is

Therefore, the 90% confidence interval is
(13.94, 15.66).
We are 90% confident that the interval from 13.94 books to 15.66 books does contain the true value of the population mean number of books people read.
If the coefficient matrix has a pivot in each column, it means that it is shaped like this:
![A=\left[\begin{array}{cccc}a_{1,1}&a_{1,2}&a_{1,3}&a_{1,4}\\0&a_{2,2}&a_{2,3}&a_{2,4}\\0&0&a_{3,3}&a_{3,4}\\0&0&0&a_{4,4}\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7Da_%7B1%2C1%7D%26a_%7B1%2C2%7D%26a_%7B1%2C3%7D%26a_%7B1%2C4%7D%5C%5C0%26a_%7B2%2C2%7D%26a_%7B2%2C3%7D%26a_%7B2%2C4%7D%5C%5C0%260%26a_%7B3%2C3%7D%26a_%7B3%2C4%7D%5C%5C0%260%260%26a_%7B4%2C4%7D%5Cend%7Barray%7D%5Cright%5D)
So, the correspondant system

will look like this:
![\left[\begin{array}{cccc}a_{1,1}&a_{1,2}&a_{1,3}&a_{1,4}\\0&a_{2,2}&a_{2,3}&a_{2,4}\\0&0&a_{3,3}&a_{3,4}\\0&0&0&a_{4,4}\end{array}\right]\cdot \left[\begin{array}{c}x_1\\x_2\\x_3\\x_4\end{array}\right] = \left[\begin{array}{c}b_1\\b_2\\b_3\\b_4\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7Da_%7B1%2C1%7D%26a_%7B1%2C2%7D%26a_%7B1%2C3%7D%26a_%7B1%2C4%7D%5C%5C0%26a_%7B2%2C2%7D%26a_%7B2%2C3%7D%26a_%7B2%2C4%7D%5C%5C0%260%26a_%7B3%2C3%7D%26a_%7B3%2C4%7D%5C%5C0%260%260%26a_%7B4%2C4%7D%5Cend%7Barray%7D%5Cright%5D%5Ccdot%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx_1%5C%5Cx_2%5C%5Cx_3%5C%5Cx_4%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Db_1%5C%5Cb_2%5C%5Cb_3%5C%5Cb_4%5Cend%7Barray%7D%5Cright%5D)
This turn into the following system of equations:

The last equation is solvable for
: we easily have

Once the value for
is known, we can solve the third equation for
:

(recall that
is now known)
The pattern should be clear: you can use the last equation to solve for
. Once it is known, the third equation involves the only variable
. Once