1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nexus9112 [7]
2 years ago
8

ASAP!!

Mathematics
1 answer:
Mama L [17]2 years ago
6 0
<h2>✒️REDUCTION</h2><h3>Given:</h3>

\maltese \: \boxed{ \boxed{ \displaystyle \tt \int \sec^n(u)\, du=\frac{\sec^{n-2}(u) \tan(u)}{n-1}+\frac{n-2}{n-1}\int \sec^{n-2}(u)\, du, \; n\neq1}}

\Large \mathcal{SOLUTION:}

\small \begin{array}{l} \normalsize \bold{Reduction\ Formula\ for}\: \displaystyle \tt \int \sec^n(u)\, du \\ \\ \displaystyle \tt \int \sec^n(u)\, du=\frac{\sec^{n-2}(u)\tan(u)}{n-1}+\frac{n-2}{n-1}\int \sec^{n-2}(u)\, du, \; n\neq1 \\ \\ \texttt{Verifying,} \\ \\ \texttt{Let } \displaystyle \tt I_n = \int \sec^n(u)\, du \\ \\ \displaystyle \tt I_n = \int \sec^{n-2}(u)\left(1 + \tan^2 (u)\right)\, du \\ \\ \displaystyle \tt I_n =  \int \sec^{n-2}(u)\, du + \int \sec^{n - 2}(u) \tan^2 (u)\, du \\ \\ \displaystyle \tt I_n = \int \sec^{n-2}(u)\, du + \int \sec^{n - 2}(u) \tan^2 (u)\, du \\ \\ \displaystyle \tt I_n =  \int \sec^{n-2}(u)\, du + \int \dfrac{1}{\cos^{n - 2}(u)} \cdot \dfrac{\sin^2 (u)}{\cos^2 (u)}\, du \\ \\ \displaystyle \tt I_n = \int \sec^{n-2}(u)\, du + \int \sin (u) \cdot \dfrac{\sin (u) }{\cos^{n}(u)} \, du \\ \\ \texttt{By Integration by Parts,} \\ \\ \begin{array}{l | l} \tt u = \sin (u) & \tt dv = \dfrac{\sin (u) }{\cos^{n}(u)}\, du \\ \\ \tt du = \cos (u)\, du & \displaystyle \tt v = \int \dfrac{\sin (u) }{\cos^{n}(u)}\, du =  \dfrac{\sec^{n - 1}(u)}{n - 1} \end{array} \\ \\ \\ \displaystyle \tt I_n = \int \sec^{n-2}(u)\, du + \sin (u) \dfrac{\sec^{n - 1} (u)}{n - 1} - \dfrac{1}{n - 1} \int \cos (u) \sec^{n - 1} (u)\, du \\ \\ \displaystyle \tt I_n = \int \sec^{n-2}(u)\, du + \dfrac{\sec^{n - 2}(u)}{n - 1}\cdot \dfrac{\sin (u)}{\cos (u)} - \dfrac{1}{n - 1} \int \sec^{n - 2} (u)\, du \\ \\ \displaystyle \tt I_n = \dfrac{\sec^{n - 2} (u) \tan (u)}{n - 1}  + \dfrac{(n - 1) - 1}{n - 1} \int \sec^{n - 2} (u)\, du \\ \\  \displaystyle \tt I_n = \dfrac{\sec^{n - 2} (u) \tan (u)}{n - 1}  + \dfrac{n - 2}{n - 1} \int \sec^{n - 2} (u)\, du \\ \\ \\ \therefore \red{\boxed{\displaystyle \tt \int \sec^n(u)\, du=\frac{\sec^{n-2}(u)\tan(u)}{n-1}+\frac{n-2}{n-1}\int \sec^{n-2}(u)\, du}} \\ \\ \bold{Q.E.D.} \end{array}

#CarryOnLearning

#BrainlyMathKnower

You might be interested in
PLZ HELLP ASAP !!!!!!!!!!!!!!!
vovangra [49]

Answer:

Where is the question?

Step-by-step explanation:

4 0
3 years ago
Given that ABCD is a parallelogram, what must be proven to prove that the diagonals bisect each other?
Yuliya22 [10]

Answer:

We have to prove  Δ ABO ≅ Δ CDO or,  Δ DAO ≅ Δ BCO.

Step-by-step explanation:

Let us assume that ABCD is a parallelogram having diagonals AC and BD.

We have to prove that in a parallelogram the diagonals bisect each other.

Assume that the diagonals of ABCD i.e. AC and BD intersect at point O.

Therefore, to prove that the diagonals AC and BD bisect each other, we have to first prove that Δ ABO and Δ CDO are congruent or Δ DAO and Δ  BCO are congruent.

In symbol, we have to prove  Δ ABO ≅ Δ CDO or,  Δ DAO ≅ Δ BCO. (Answer)

4 0
3 years ago
What is the value of 11g - 9k + 3 when g = 9 and k = 11?<br> Neatly show your work.
fenix001 [56]

Answer:

3

Step-by-step explanation:

11g - 9k + 3

Let g = 9 and k =11

11 * 9 - 9*11 +3

Multiply

99 - 99 +3

Add

3

4 0
3 years ago
Read 2 more answers
4t + 2u<br> w;t= 2 and u= 1
Neko [114]

15

Step-by-step explanation:

4t + 2u²- u³

4×2=8

2×1=2²=8

1³=1

8+8-1

16-1=15

5 0
3 years ago
In a triangle what is the ratio for sine? consine?
nasty-shy [4]
We call the ratio of the opposite side of a right triangle to the hypotenuse the sine and give it the symbol sin. The ratio of the adjacent side of a right triangle to the hypotenuse is called the cosine and given the symbol cos.
6 0
4 years ago
Other questions:
  • Express 75 out of 300 as a percentage
    8·2 answers
  • the distance traveled at a constant speed is directly proportional to the timeof travel olivia traveled 306 milesin 8.5 hours,ho
    6·1 answer
  • The distributive property of multiplication justifies which of the following statements?
    14·1 answer
  • Calculate the perimeter of an equilateral triangle which has a side of 14cm
    11·1 answer
  • Please help me I need help soon as possible
    13·2 answers
  • The mean of three number is 15. if 2 of the numbers are 18 and 16 what is the third number​
    5·1 answer
  • Melody Pond and a tree cast a shadow at the same time of day. Melody is 5.6 feet tall and casts a 10-foot shadow. If the length
    13·1 answer
  • The process for rationalizing a denominator in a variable expression is the same as in a numeric expression. Here’s a real-world
    8·2 answers
  • Yx = -wvu<br> v =<br><br> Please help asap
    14·1 answer
  • The price of an item yesterday was $80. Today, the price rose to $124. Find the percentage increase
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!