1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nexus9112 [7]
2 years ago
8

ASAP!!

Mathematics
1 answer:
Mama L [17]2 years ago
6 0
<h2>✒️REDUCTION</h2><h3>Given:</h3>

\maltese \: \boxed{ \boxed{ \displaystyle \tt \int \sec^n(u)\, du=\frac{\sec^{n-2}(u) \tan(u)}{n-1}+\frac{n-2}{n-1}\int \sec^{n-2}(u)\, du, \; n\neq1}}

\Large \mathcal{SOLUTION:}

\small \begin{array}{l} \normalsize \bold{Reduction\ Formula\ for}\: \displaystyle \tt \int \sec^n(u)\, du \\ \\ \displaystyle \tt \int \sec^n(u)\, du=\frac{\sec^{n-2}(u)\tan(u)}{n-1}+\frac{n-2}{n-1}\int \sec^{n-2}(u)\, du, \; n\neq1 \\ \\ \texttt{Verifying,} \\ \\ \texttt{Let } \displaystyle \tt I_n = \int \sec^n(u)\, du \\ \\ \displaystyle \tt I_n = \int \sec^{n-2}(u)\left(1 + \tan^2 (u)\right)\, du \\ \\ \displaystyle \tt I_n =  \int \sec^{n-2}(u)\, du + \int \sec^{n - 2}(u) \tan^2 (u)\, du \\ \\ \displaystyle \tt I_n = \int \sec^{n-2}(u)\, du + \int \sec^{n - 2}(u) \tan^2 (u)\, du \\ \\ \displaystyle \tt I_n =  \int \sec^{n-2}(u)\, du + \int \dfrac{1}{\cos^{n - 2}(u)} \cdot \dfrac{\sin^2 (u)}{\cos^2 (u)}\, du \\ \\ \displaystyle \tt I_n = \int \sec^{n-2}(u)\, du + \int \sin (u) \cdot \dfrac{\sin (u) }{\cos^{n}(u)} \, du \\ \\ \texttt{By Integration by Parts,} \\ \\ \begin{array}{l | l} \tt u = \sin (u) & \tt dv = \dfrac{\sin (u) }{\cos^{n}(u)}\, du \\ \\ \tt du = \cos (u)\, du & \displaystyle \tt v = \int \dfrac{\sin (u) }{\cos^{n}(u)}\, du =  \dfrac{\sec^{n - 1}(u)}{n - 1} \end{array} \\ \\ \\ \displaystyle \tt I_n = \int \sec^{n-2}(u)\, du + \sin (u) \dfrac{\sec^{n - 1} (u)}{n - 1} - \dfrac{1}{n - 1} \int \cos (u) \sec^{n - 1} (u)\, du \\ \\ \displaystyle \tt I_n = \int \sec^{n-2}(u)\, du + \dfrac{\sec^{n - 2}(u)}{n - 1}\cdot \dfrac{\sin (u)}{\cos (u)} - \dfrac{1}{n - 1} \int \sec^{n - 2} (u)\, du \\ \\ \displaystyle \tt I_n = \dfrac{\sec^{n - 2} (u) \tan (u)}{n - 1}  + \dfrac{(n - 1) - 1}{n - 1} \int \sec^{n - 2} (u)\, du \\ \\  \displaystyle \tt I_n = \dfrac{\sec^{n - 2} (u) \tan (u)}{n - 1}  + \dfrac{n - 2}{n - 1} \int \sec^{n - 2} (u)\, du \\ \\ \\ \therefore \red{\boxed{\displaystyle \tt \int \sec^n(u)\, du=\frac{\sec^{n-2}(u)\tan(u)}{n-1}+\frac{n-2}{n-1}\int \sec^{n-2}(u)\, du}} \\ \\ \bold{Q.E.D.} \end{array}

#CarryOnLearning

#BrainlyMathKnower

You might be interested in
What is the distance between the points (7, −10) and (−8, −10)?
marin [14]

Answer:

15

Step-by-step explanation:

Using the distance formula

7 0
3 years ago
Read 2 more answers
Two number have a sum of 71 and a difference of 37
larisa86 [58]
The right answer for the question that is being asked and shown above is that:

Two numbers have a sum of 71 and a difference of 37
x + y = 71
x - y = 37

So in order to get the two numbers, here it is:
x + y = 71
x - y = 37
------------
2x = 108
x = 54
y = 71 - 54
y = 17

<span>So the two numbers are 54 and 17</span>
6 0
3 years ago
Read 2 more answers
What is least 1.11, 0.111,1.01,1.001
Elan Coil [88]

0.11 is the least amount.

8 0
4 years ago
Can someone show me step by step how to do these problems
tiny-mole [99]
Unlocking pm....................................
5 0
4 years ago
Read 2 more answers
The girl went to the store at 10:45 and lasted 1 hour and 30 minutes . At what time did she come out of the store
mars1129 [50]
She left at 12:15.  10:45 plus 1 hour= 11:45 + 15 min +12 +15= 12:15
4 0
4 years ago
Other questions:
  • At a local event, the ratio of hamburgers to hot dogs sold is 5:3. The number of hamburgers sold is 275. How many more hamburger
    12·1 answer
  • Which of the following expressions results in 0 when evaluated at x = 3?
    13·1 answer
  • Riley and Louie have a $5,000 to invest. They both invest at a 2.5% simple interest rate. What is the value of Louis investment
    13·1 answer
  • A parallelogram has coordinates A(1, 1), B(5, 4), C(7, 1), and D(3, -2). What are the coordinates of parallelogram A′B′C′D′ afte
    5·1 answer
  • What is the value of x when (6x+1)+(2x+10)=79
    15·1 answer
  • One of the roots of the quadratic equation x^2−5mx+6m^2=0 is 36. Find the greatest possible value of the second root. 100PTS!!!
    7·2 answers
  • (X+3)(x+5)<br><br> Expand and simplify?
    8·2 answers
  • What is the x for x - 8 = -5
    15·1 answer
  • Find the measure of x.
    5·1 answer
  • .<br> Evaluate ƒ(x) = 3x + 8 for x = 1.<br><br><br> 3<br><br><br> 5<br><br><br> 11<br><br><br> –11
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!