Answer: With 11 pipes, you need 31.82 minutes to fill the tank.
Step-by-step explanation:
Let's define R as the rate at which one single pipe can fill a tank.
We know that 7 of them can fill a tank in 50 minutes, then we have the equation:
7*R*50min = 1 tank
Whit this equation, we can find the value of R:
R = 1 tank/(7*50min) = (1/350) tank/min.
Now that we know the value of R, we can do the same calculation but now with 11 pipes.
Then the time needed to fill the tank, T, is such that:
11*(1/350 tank/min)*T = 1 tank
We need to isolate T.
T = 1 tank/(11*(1/350 tank/min)) = 31.82 min
With 11 pipes, you need 31.82 minutes to fill the tank.
9514 1404 393
Answer:
f'(x) = (-6x² -14x -23)/(x² +5x +2)²
f''(x) = (12x³ +42x² +138x +202)/(x² +5x +2)³
Step-by-step explanation:
The applicable derivative formula is ...
d(u/v) = (v·du -u·dv)/v²
__
f'(x) = ((-x² -5x -2)(4x +4) -(2x² +4x -3)(-2x -5))/(-x² -5x -2)²
f'(x) = (-4x³ -24x²-28x -8 +4x³ +18x² +14x -15)/(x² +5x +2)²
f'(x) = (-6x² -14x -23)/(x² +5x +2)²
__
Similarly, the second derivative is the derivative of f'(x).
f''(x) = ((x² +5x +2)²(-12x -14) -(-6x² -14x -23)(2(x² +5x +2)(2x +5)))/(x² +5x +2)⁴
f''(x) = ((x² +5x +2)(-12x -14) +2(6x² +14x +23)(2x +5))/(x² +5x +2)³
f''(x) = (12x³ +42x² +138x +202)/(x² +5x +2)³
Answer: Please mark me brainliest, it will really help me just as this answer really helps you.
Description: Divide by two
Next three terms: 1/8, 1/16, 1/32
Explanation:
<em>How to get next term?</em>
Divide the number before by two to get the next term.
<em>How do you get the pattern?</em>
I observed a pattern that each next number was divided by two.