Answer:
- infinitely many
- one solution
- no solution
- one solution
Step-by-step explanation:
1. 4x−x=2x+x
Simplifies to 3x = 3x, which is true for all values of x. Hence there are infinitely many solutions.
___
2. 2x+1=5
True only for x=2; one solution.
___
3. 4x+2=5x−x+4
Simplifies to ...
4x +2 = 4x +4
2 = 4 . . . . . . . not true for any value of x; no solution.
___
4. 2(x+4)=4(x+2)
Simplifies to ...
2x +8 = 4x +8
0= 2x . . . . . . . . . subtract 2x+8
True only for x=0; one solution.
Answer:
The probability of missing both two-point conversion attempts is 7.5%
Step-by-step explanation:
We are informed that the probability of missing the first attempt is 50% of the time. Furthermore, the probability of missing on the second attempt given that he missed the first attempt is 15% of the time
Now,the probability of missing on both the two-point conversion attempts will simply be given by the product of these two probabilities since the events are independent;
50%*15% = 0.5 * 0.15 = 7.5%
Therefore, the probability of missing both two-point conversion attempts is 7.5%
Answer:
J: 84%.
Step-by-step explanation:
I don't really know how to explain this one.
<h3>
Answer: True</h3>
Explanation:
Technically you could isolate any variable you wanted, from either equation. However, convention is to pick the variable in which isolating it is easiest, and most efficient.
The key thing to look for is if there's a coefficient of 1. This is found in the second equation for the y term. Think of -4x+y = -13 as -4x+1y = -13. Due to the coefficient of 1, when solving for y we won't involve messy fractions.
If you were to solve for y, then you'd get y = 4x-13, which is then plugged in (aka substituted) into the first equation. That allows you to solve for x. Once you know x, you can determine y.
Ratio of their bases =
Ratio of their altitudes = 
<u>Step-by-step explanation:</u>
For first rectangle, it was given that
Base 1 = 12 inches
Altitude 1 = 6 inches
For the second rectangle, it was given that
Base 2 = 10 inches
Altitude 2 = 5 inches
Ratio of their bases is given by the ratio of the base of the first rectangle to the second one.
Ratio of their altitudes is given by the ratio of the altitude of the first rectangle to the altitude of the second rectangle.
Ratio of their bases =
Ratio of their altitudes = 