Answer:
See the image below:)
Step-by-step explanation:
Answer:
x = 5
Step-by-step explanation:
Just use the Pythagorean Triangle:
13^2 - 12^2 = x^2
x^2 = 25
x = 5
Answer:
(1/2) * A + (1/2) * B <= 100; for A => 50; for B => 20
(5000) * A + (30000) * B <= 1500000; for A => 50; for B => 20
Step-by-step explanation:
There are two inequalities in mind, the first of the surface and the second of the price. Always bearing in mind that the minimum are 50 of A and 20 of B.
The first
A occupies 1/2 m and B occupies 1/2 m of surface, and the limit is 100 m of surface. Thus:
(1/2) * A + (1/2) * B <= 100; for A => 50; for B => 20
The second:
A costs 5,000 and B costs 30,000, and the limit is 1,500,000. Therefore:
(5000) * A + (30000) * B <= 1500000; for A => 50; for B => 20
The mean of this test will be 57.
<h3>What is Standard Deviation and Mean?</h3>
A standard deviation (or σ) is a measure of how dispersed the data is in relation to the mean.
The mean can be used to get an overall idea, or picture, of the data set.
Let Mean be 'm'
and standard deviation= 
So, m-2
=49
and, m +
=61
Solving the above two equation we get

Now, m= 61-
= 61-4
= 57
So , the mean of this test will be =57
Learn more about mean and standard deviation here:
brainly.com/question/16030790
#SPJ1
Answer:
a) 0.0853
b) 0.0000
Step-by-step explanation:
Parameters given stated that;
H₀ : <em>p = </em>0.6
H₁ : <em>p = </em>0.6, this explains the acceptance region as;
p° ≤
=0.63 and the region region as p°>0.63 (where p° is known as the sample proportion)
a).
the probability of type I error if exactly 60% is calculated as :
∝ = P (Reject H₀ | H₀ is true)
= P (p°>0.63 | p=0.6)
where p° is represented as <em>pI</em><em> </em>in the subsequent calculated steps below
= P ![[\frac{p°-p}{\sqrt{\frac{p(1-p)}{n}}} >\frac{0.63-p}{\sqrt{\frac{p(1-p)}{n}}} |p=0.6]](https://tex.z-dn.net/?f=%5B%5Cfrac%7Bp%C2%B0-p%7D%7B%5Csqrt%7B%5Cfrac%7Bp%281-p%29%7D%7Bn%7D%7D%7D%20%3E%5Cfrac%7B0.63-p%7D%7B%5Csqrt%7B%5Cfrac%7Bp%281-p%29%7D%7Bn%7D%7D%7D%20%7Cp%3D0.6%5D)
= P ![[\frac{p°-0.6}{\sqrt{\frac{0.6(1-0.6)}{500}}} >\frac{0.63-0.6}{\sqrt{\frac{0.6(1-0.6)}{500}}} ]](https://tex.z-dn.net/?f=%5B%5Cfrac%7Bp%C2%B0-0.6%7D%7B%5Csqrt%7B%5Cfrac%7B0.6%281-0.6%29%7D%7B500%7D%7D%7D%20%3E%5Cfrac%7B0.63-0.6%7D%7B%5Csqrt%7B%5Cfrac%7B0.6%281-0.6%29%7D%7B500%7D%7D%7D%20%5D)
= P ![[Z>\frac{0.63-0.6}{\sqrt{\frac{0.6(1-0.6)}{500} } } ]](https://tex.z-dn.net/?f=%5BZ%3E%5Cfrac%7B0.63-0.6%7D%7B%5Csqrt%7B%5Cfrac%7B0.6%281-0.6%29%7D%7B500%7D%20%7D%20%7D%20%5D)
= P [Z > 1.37]
= 1 - P [Z ≤ 1.37]
= 1 - Ф (1.37)
= 1 - 0.914657 ( from Cumulative Standard Normal Distribution Table)
≅ 0.0853
b)
The probability of Type II error β is stated as:
β = P (Accept H₀ | H₁ is true)
= P [p° ≤ 0.63 | p = 0.75]
where p° is represented as <em>pI</em><em> </em>in the subsequent calculated steps below
= P ![[\frac{p°-p} \sqrt{\frac{p(1-p)}{n} } }\leq \frac{0.63-p}{\sqrt{\frac{p(1-p)}{n} } } | p=0.75]](https://tex.z-dn.net/?f=%5B%5Cfrac%7Bp%C2%B0-p%7D%20%5Csqrt%7B%5Cfrac%7Bp%281-p%29%7D%7Bn%7D%20%7D%20%7D%5Cleq%20%5Cfrac%7B0.63-p%7D%7B%5Csqrt%7B%5Cfrac%7Bp%281-p%29%7D%7Bn%7D%20%7D%20%7D%20%7C%20p%3D0.75%5D)
= P ![[\frac{p°-0.6} \sqrt{\frac{0.75(1-0.75)}{500} } }\leq \frac{0.63-0.75}{\sqrt{\frac{0.75(1-0.75)}{500} } } ]](https://tex.z-dn.net/?f=%5B%5Cfrac%7Bp%C2%B0-0.6%7D%20%5Csqrt%7B%5Cfrac%7B0.75%281-0.75%29%7D%7B500%7D%20%7D%20%7D%5Cleq%20%5Cfrac%7B0.63-0.75%7D%7B%5Csqrt%7B%5Cfrac%7B0.75%281-0.75%29%7D%7B500%7D%20%7D%20%7D%20%5D)
= P![[Z\leq\frac{0.63-0.75}{\sqrt{\frac{0.75(1-0.75)}{500} } } ]](https://tex.z-dn.net/?f=%5BZ%5Cleq%5Cfrac%7B0.63-0.75%7D%7B%5Csqrt%7B%5Cfrac%7B0.75%281-0.75%29%7D%7B500%7D%20%7D%20%7D%20%5D)
= P [Z ≤ -6.20]
= Ф (-6.20)
≅ 0.0000 (from Cumulative Standard Normal Distribution Table).