Answer:
slope = 5
Step-by-step explanation:
The equation of a lin in slope- intercept form is
y = mx + c ( m is the slope and c the y- intercept )
y = 5x + 3 ← is in slope- intercept form
with slope m = 5
Parallel lines have equal slopes , then
The slope of a line parallel to y = 5x + 3 is 5
I'm guessing on the make up of the matrices.
First off let's look at [C][F].
[C]=
[F]=
[C][F]=
where each element of [C][F] comes from multiplying a row of [C] with a column of [F].
Example: First element is product of first row and first column.
.
.
.
Now that we have [C][F], we can subtract it from [B], element by element,
[B]-[C][F]=
[B]-[C][F]=
.
.
.
If this is not how the matrices look,please re-state the problem and be more specific about the make up of the matrices (rows x columns).
Here's an example.
[A] is a 2x2 matrix. A=[1,2,3,4].
The assumption is that [A] looks like this,
[A]=
[B] is a 3x2 matrix. B=[5,6,7,8,9,10]
[B]=
(16)/(2)*4-(10)/(5)+6= 36
Answer:
Yes it is a function
Step-by-step explanation:
We have to check the ordered pairs to find out if given relation is a function or not.
In an ordered pair, the first element represents the input and the second element represents the output.
The set of inputs is domain and output is range.
For a relation to be function, there should be no repetition in domain i.e there should be unique pairs of input and output.
In the given relation, the domain is {3,5,-1,-2}.
No element is repeated hence it is a function ..