Answer:
<em></em>
<em></em>
<em></em>
Step-by-step explanation:
<em>Your question is incomplete without an attachment (See attachment)</em>
Required
Determine the area of the shaded part
From the attachment;
<em>Assume that the shaded portion is closed to the right;</em>
<em>Calculate the Area:</em>
<em></em>
<em></em>
<em></em>
<em></em>
<em></em>
<em></em>
<em></em>
<em></em>
<em></em>
<em>Next;</em>
<em>Calculate the Area of the imaginary triangle (on the right)</em>
<em></em>
<em></em>
<em></em>
<em></em>
<em></em>
<em></em>
<em></em>
<em></em>
<em></em>
<em></em>
<em></em>
<em>Lastly, calculate the Area of the Shaded Part</em>
<em></em>
<em></em>
<em></em>
<em></em>
<em></em>
<em></em>
<em></em>
<em>Hence,</em>
<em>The area of the shaded part is 72in²</em>
Answer:
The solution for the given algebraic equation is 
Step-by-step explanation:
Given algebraic equation as :
( x - 8 ) + 1 = 2 ( 18 x - 1 )
Now solving the equation while opening the brackets
So,
× x -
× 8 + 1 = 2 × 18 x - 2
Or,
-
+ 1 = 36 x - 2
or,
- 4 + 1 = 36 x - 2
or,
- 3 = 36 x - 2
or,
- 36 x = - 2 + 3
Or,
- 36 x = 1
or,
= 1
or,
= 1
∴ 71 x = - 2
I.e x = 
Hence The solution for the given algebraic equation is
Answer
301 minus 200? If so, that is 101
Expenses of respondents in a survey is a quantitative data and the level of measurement is a ratio scale.
<h3>What is a Qualitative and a Quantitative Data?</h3>
A quantitative data can be described as a type of data that you can measure or counted, and also given a numerical value to, while a qualitative data is a type of data that cannot be expressed using numbers.
Examples of quantitative data include, number of students in a class, weight of students in a class, etc.
Examples of qualitative data include hair color, religion, nationality, etc.
Expenses of respondents can be given numerical values, therefore, expenses of respondents in a survey is a quantitative data and the level of measurement is a ratio scale.
Learn more about quantitative data on:
brainly.com/question/96076
#SPJ1
------------------------------------------------------
Define jam and bread mix
------------------------------------------------------
Let the number of jar of jam be x
Let the number of packages of bread mix be y
------------------------------------------------------
Form equations and solve
------------------------------------------------------
x + y = 8 --------------------- (1)
6x + 5y = 45 ---------------- (2)
------------------------------------------------------
Rewrite equation to make x the subject
------------------------------------------------------
x+ y = 8
x = 8 - y ----------------------------(1a)
------------------------------------------------------
Substitute (1a) into (2)
------------------------------------------------------
6(8 - y) + 5y = 45
48 - 6y + 5y = 45
y = 48 - 45
y = 3
------------------------------------------------------
Substitute y = 3 into (1) to find x
------------------------------------------------------
x + 3 = 8
x = 8 - 3
x = 5
------------------------------------------------------
Find jam and bread mix
------------------------------------------------------
Jars of Jam = x = 5
Packages of bread mix = y = 3
------------------------------------------------------
Answer: Jam = 5 ; bread mix = 3
------------------------------------------------------