Answer:
Step-by-step explanation:
y = sin(t^2)
y' = 2tcos(t^2)
y'' = 2cos(t^2) - 4t^2sin(t^2)
so the equation become
2cos(t^2) - 4t^2sin(t^2) + p(t)(2tcos(t^2)) + q(t)sin(t^2) = 0
when t=0, above eqution is 2. That is, there does not exist the solution. so y can not be a solution on I containing t=0.
Answer:
4.12 kg
Step-by-step explanation:
Regular cakes:
1 dozen normal sponge cakes: 264 g plain flour
Vegetarian cakes:
1 dozen cakes: 264 g plain flour
4 eggs are replaced by 4 * 30 g of flour = 120 g flour
total flour for 1 dozen vegetarian cakes = 264 g + 120 g = 384 g
Proportion for regular cakes:
12 cakes to 264 g flour = 100 cakes to x grams flour
12/264 = 100/x
12x = 26400
x = 2200
2200 g flour for 100 regular cakes
Proportion for vegetarian cakes:
12 cakes to 384 g flour = 60 cakes to y grams flour
12/384 = 60/y
12y = 384 * 60
12y = 23040
y = 1920
1920 g flour for 60 vegetarian cakes
Total flour needed:
2200 g + 1920 g = 4120 g
4120 g * 1 kg/(1000 g) = 4.12 kg
Answer: 4.12 kg
Answer:
It is not a good model because neither point lies on the line.
Step-by-step explanation:
We can test each point on the equation of the line.
7x - 10y = 3
Point: (8, 5)
7(8) - 10(5) = 56 - 50 = 6
The left side equals 6, not 3, so point (8, 5) is not on that line.
Point: (-12, -9)
7(-12) - 10(-9) = -84 + 90 = 6
The left side equals 6 again, but the right side is 3, not 6.
Answer: It is not a good model because neither point lies on the line.
Answer:
x = {nπ -π/4, (4nπ -π)/16}
Step-by-step explanation:
It can be helpful to make use of the identities for angle sums and differences to rewrite the sum:
cos(3x) +sin(5x) = cos(4x -x) +sin(4x +x)
= cos(4x)cos(x) +sin(4x)sin(x) +sin(4x)cos(x) +cos(4x)sin(x)
= sin(x)(sin(4x) +cos(4x)) +cos(x)(sin(4x) +cos(4x))
= (sin(x) +cos(x))·(sin(4x) +cos(4x))
Each of the sums in this product is of the same form, so each can be simplified using the identity ...
sin(x) +cos(x) = √2·sin(x +π/4)
Then the given equation can be rewritten as ...
cos(3x) +sin(5x) = 0
2·sin(x +π/4)·sin(4x +π/4) = 0
Of course sin(x) = 0 for x = n·π, so these factors are zero when ...
sin(x +π/4) = 0 ⇒ x = nπ -π/4
sin(4x +π/4) = 0 ⇒ x = (nπ -π/4)/4 = (4nπ -π)/16
The solutions are ...
x ∈ {(n-1)π/4, (4n-1)π/16} . . . . . for any integer n
A. Multiply the area of the original store by the percent increase then add that to the original amount.
1200 x 0.75 = 900
1200 + 900 = 2100
Answer: 2,100 square feet.
B. 2000 x 0.30 = 600
2000 + 600 = $2,600
2600 x 0.05 = 130
2600 + 130 = 2,730
Rent :$2,730