1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
d1i1m1o1n [39]
2 years ago
15

For the diagram at right, write and solve an equation to find x

Mathematics
1 answer:
Tomtit [17]2 years ago
3 0

Answer:

x = 24

Step-by-step explanation:

The formula for determining the sum of interior angles is:

(n-2) * 180

4 * 180 = 720

Therefore to determine an equation for x, we must add up all the interior angle equations and set them equal to 720.

(2x+3) +(3x+12) + (7x+14) + (9x+2) + (4x+8) + (3x+9) = 720\\28x + 48 = 720\\28x = 672\\x = 24

The equation and answer above shows how to find x, which equals 24.

You might be interested in
What is 31.75 times 1000
dmitriy555 [2]

Answer:

31750

Step-by-step explanation:

7 0
2 years ago
Read 2 more answers
Which of the following is a rational number?
Lunna [17]
The correct answer is B
6 0
2 years ago
How to work vector algebra
erica [24]

Vectors and vector addition:

A scalar is a quantity like mass or temperature that only has a magnitude. On the other had, a vector is a mathematical object that has magnitude and direction. A line of given length and pointing along a given direction, such as an arrow, is the typical representation of a vector. Typical notation to designate a vector is a boldfaced character, a character with and arrow on it, or a character with a line under it (i.e., ). The magnitude of a vector is its length and is normally denoted by or A.  Addition of two vectors is accomplished by laying the vectors head to tail in sequence to create a triangle such as is shown in the figure.  The following rules apply in vector algebra.where P and Q are vectors and a is a scalar. 

Unit vectors:

A unit vector is a vector of unit length. A unit vector is sometimes denoted by replacing the arrow on a vector with a "^" or just adding a "^" on a boldfaced character (i.e., ). Therefore, Any vector can be made into a unit vector by dividing it by its length. Any vector can be fully represented by providing its magnitude and a unit vector along its direction.

Base vectors and vector components:

Base vectors are a set of vectors selected as a base to represent all other vectors. The idea is to construct each vector from the addition of vectors along the base directions. For example, the vector in the figure can be written as the sum of the three vectors u1, u2, and u3, each along the direction of one of the base vectors e1, e2, and e3, so that Each one of the vectors u1, u2, and u3 is parallel to one of the base vectors and can be written as scalar multiple of that base. Let u1, u2, and u3 denote these scalar multipliers such that one has<span> </span><span>The original vector</span><span> </span><span>u</span><span> </span><span>can now be written as </span><span>The scalar multipliers</span><span> </span><span>u</span><span>1</span><span>,</span><span> </span><span>u</span><span>2</span><span>, and</span><span> </span><span>u</span><span>3</span><span> </span><span>are known as the components of</span><span> </span><span>u</span><span> </span><span>in the base described by the base vectors</span><span> </span><span>e</span><span>1</span><span>,</span><span> </span><span>e</span><span>2</span><span>, and</span><span> </span><span>e</span><span>3</span><span>. If the base vectors are unit vectors, then the components represent the lengths, respectively, of the three vectors</span><span> </span><span>u</span><span>1</span><span>,</span><span> </span><span>u</span><span>2</span><span>, and</span><span> </span><span>u</span><span>3</span><span>. If the base vectors are unit vectors and are mutually orthogonal, then the base is known as an orthonormal, Euclidean, or Cartesian base.</span>

 

A vector can be resolved along any two directions in a plane containing it. The figure shows how the parallelogram rule is used to construct vectors a and b that add up to c. <span>In three dimensions, a vector can be resolved along any three non-coplanar lines. The figure shows how a vector can be resolved along the three directions by first finding a vector in the plane of two of the directions and then resolving this new vector along the two directions in the plane. </span><span>When vectors are represented in terms of base vectors and components, addition of two vectors results in the addition of the components of the vectors.</span>

8 0
3 years ago
Read 2 more answers
Complementary and supplementary angles please answer please
kari74 [83]

Answer:

m<MON = 57

Hope this helps :)

3 0
3 years ago
A rectangular parking lot has an area of 15,000 feet squared, the length is 20 feet more than the width. Find the dimensions
faust18 [17]

Dimension of rectangular parking lot is width = 112.882 feet and length = 132.882 feet

<h3><u>Solution:</u></h3>

Given that  

Area of rectangular parking lot = 15000 square feet

Length is 20 feet more than the width.

Need to find the dimensions of rectangular parking lot.

Let assume width of the rectangular parking lot in feet be represented by variable "x"

As Length is 20 feet more than the width,

so length of rectangular parking plot = 20 + width of the rectangular parking plot

=> length of rectangular parking plot = 20 + x = x + 20

<em><u>The area of rectangle is given as:</u></em>

\text {Area of rectangle }=length \times width

Area of rectangular parking lot = length of rectangular parking plot \times width of the rectangular parking

\begin{array}{l}{=(x+20) \times (x)} \\\\ {\Rightarrow \text { Area of rectangular parking lot }=x^{2}+20 x}\end{array}

But it is given that Area of rectangular parking lot = 15000 square feet

\begin{array}{l}{=>x^{2}+20 x=15000} \\\\ {=>x^{2}+20 x-15000=0}\end{array}

Solving the above quadratic equation using quadratic formula

<em><u>General form of quadratic equation is  </u></em>

{ax^{2}+\mathrm{b} x+\mathrm{c}=0

And quadratic formula for getting roots of quadratic equation is

x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}

In our case b = 20, a = 1 and c = -15000

Calculating roots of the equation we get

\begin{array}{l}{x=\frac{-(20) \pm \sqrt{(20)^{2}-4(1)(-15000)}}{2 \times 1}} \\\\ {x=\frac{-(20) \pm \sqrt{400+60000}}{2 \times 1}} \\\\ {x=\frac{-(20) \pm \sqrt{60400}}{2}} \\\\ {x=\frac{-(20) \pm 245.764}{2 \times 1}}\end{array}

\begin{array}{l}{=>x=\frac{-(20)+245.764}{2 \times 1} \text { or } x=\frac{-(20)-245.764}{2 \times 1}} \\\\ {=>x=\frac{225.764}{2} \text { or } x=\frac{-265.764}{2}} \\\\ {=>x=112.882 \text { or } x=-132.882}\end{array}

As variable x represents width of the rectangular parking lot, it cannot be negative.

=> Width of the rectangular parking lot "x" = 112.882 feet  

=> Length of the rectangular parking lot = x + 20 = 112.882 + 20 = 132.882

Hence can conclude that dimension of rectangular parking lot is width = 112.882 feet and length = 132.882 feet.

3 0
3 years ago
Other questions:
  • In a geometric sequence, a4=7 and a6=28<br> use the geometric sequence to find a5
    14·1 answer
  • Find <img src="https://tex.z-dn.net/?f=f%5E%7B-1%7D%20" id="TexFormula1" title="f^{-1} " alt="f^{-1} " align="absmiddle" class="
    12·1 answer
  • -2x + y=9<br> -4x - y=9 <br> What is the answer
    8·2 answers
  • PLEASE HELP!!!!!!!
    10·2 answers
  • A boat can hold 45 people.27more people can fit on the boat . how many people are on the boat now?
    6·2 answers
  • -9=-3(x+2)+5x what does x equal
    13·2 answers
  • The volume of a cube is216ft^3 what is the Length of that side? Plz answer this
    10·2 answers
  • ( 20 points + brainliest for the correct answer!!!) <br><br> ASA AAS CONGRUENCE
    5·1 answer
  • The following two triangles are similar. Solve for x, please show all your work!!
    6·1 answer
  • The Thomas' backyard pool is
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!