1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Paha777 [63]
3 years ago
10

Calculus, question 5 to 5a​

Mathematics
1 answer:
Llana [10]3 years ago
4 0

5. Let x = \sin(\theta). Note that we want this variable change to be reversible, so we tacitly assume 0 ≤ θ ≤ π/2. Then

\cos(\theta) = \sqrt{1 - \sin^2(\theta)} = \sqrt{1 - x^2}

and dx = \cos(\theta) \, d\theta. So the integral transforms to

\displaystyle \int \frac{x^3}{\sqrt{1-x^2}} \, dx = \int \frac{\sin^3(\theta)}{\cos(\theta)} \cos(\theta) \, d\theta = \int \sin^3(\theta) \, d\theta

Reduce the power by writing

\sin^3(\theta) = \sin(\theta) \sin^2(\theta) = \sin(\theta) (1 - \cos^2(\theta))

Now let y = \cos(\theta), so that dy = -\sin(\theta) \, d\theta. Then

\displaystyle \int \sin(\theta) (1-\cos^2(\theta)) \, d\theta = - \int (1-y^2) \, dy = -y + \frac13 y^3 + C

Replace the variable to get the antiderivative back in terms of x and we have

\displaystyle \int \frac{x^3}{\sqrt{1-x^2}} \, dx = -\cos(\theta) + \frac13 \cos^3(\theta) + C

\displaystyle \int \frac{x^3}{\sqrt{1-x^2}} \, dx = -\sqrt{1-x^2} + \frac13 \left(\sqrt{1-x^2}\right)^3 + C

\displaystyle \int \frac{x^3}{\sqrt{1-x^2}} \, dx = -\frac13 \sqrt{1-x^2} \left(3 - \left(\sqrt{1-x^2}\right)^2\right) + C

\displaystyle \int \frac{x^3}{\sqrt{1-x^2}} \, dx = \boxed{-\frac13 \sqrt{1-x^2} (2+x^2) + C}

6. Let x = 3\tan(\theta) and dx=3\sec^2(\theta)\,d\theta. It follows that

\cos(\theta) = \dfrac1{\sec(\theta)} = \dfrac1{\sqrt{1+\tan^2(\theta)}} = \dfrac3{\sqrt{9+x^2}}

since, like in the previous integral, under this reversible variable change we assume -π/2 < θ < π/2. Over this interval, sec(θ) is positive.

Now,

\displaystyle \int \frac{x^3}{\sqrt{9+x^2}} \, dx = \int \frac{27\tan^3(\theta)}{\sqrt{9+9\tan^2(\theta)}} 3\sec^2(\theta) \, d\theta = 27 \int \frac{\tan^3(\theta) \sec^2(\theta)}{\sqrt{1+\tan^2(\theta)}} \, d\theta

The denominator reduces to

\sqrt{1+\tan^2(\theta)} = \sqrt{\sec^2(\theta)} = |\sec(\theta)| = \sec(\theta)

and so

\displaystyle 27 \int \tan^3(\theta) \sec(\theta) \, d\theta = 27 \int \frac{\sin^3(\theta)}{\cos^4(\theta)} \, d\theta

Rewrite sin³(θ) just like before,

\displaystyle 27 \int \frac{\sin(\theta) (1-\cos^2(\theta))}{\cos^4(\theta)} \, d\theta

and substitute y=\cos(\theta) again to get

\displaystyle -27 \int \frac{1-y^2}{y^4} \, dy = 27 \int \left(\frac1{y^2} - \frac1{y^4}\right) \, dy = 27 \left(\frac1{3y^3} - \frac1y\right) + C

Put everything back in terms of x :

\displaystyle \int \frac{x^3}{\sqrt{9+x^2}} \, dx = 9 \left(\frac1{\cos^3(\theta)} - \frac3{\cos(\theta)}\right) + C

\displaystyle \int \frac{x^3}{\sqrt{9+x^2}} \, dx = 9 \left(\frac{\left(\sqrt{9+x^2}\right)^3}{27} - \sqrt{9+x^2}\right) + C

\displaystyle \int \frac{x^3}{\sqrt{9+x^2}} \, dx = \boxed{\frac13 \sqrt{9+x^2} (x^2 - 18) + C}

2(b). For some constants a, b, c, and d, we have

\dfrac1{x^2+x^4} = \dfrac1{x^2(1+x^2)} = \boxed{\dfrac ax + \dfrac b{x^2} + \dfrac{cx+d}{x^2+1}}

3(a). For some constants a, b, and c,

\dfrac{x^2+4}{x^3-3x^2+2x} = \dfrac{x^2+4}{x(x-1)(x-2)} = \boxed{\dfrac ax + \dfrac b{x-1} + \dfrac c{x-2}}

5(a). For some constants a-f,

\dfrac{x^5+1}{(x^2-x)(x^4+2x^2+1)} = \dfrac{x^5+1}{x(x-1)(x+1)(x^2+1)^2} \\\\ = \dfrac{x^4 - x^3 + x^2 - x + 1}{x(x-1)(x^2+1)^2} = \boxed{\dfrac ax + \dfrac b{x-1} + \dfrac{cx+d}{x^2+1} + \dfrac{ex+f}{(x^2+1)^2}}

where we use the sum-of-5th-powers identity,

a^5 + b^5 = (a+b) (a^4-a^3b+a^2b^2-ab^3+b^4)

You might be interested in
a checheers board is 8 square long and 7 squares wide. The area of each square is 14 square centimeter. Estimate the perimeter o
Lesechka [4]
Turn 14 into 16, 4 x 4 = 16, 4 x 8 = 32, 32 x 4 = 128cm
4 0
3 years ago
Two stores carry a similar stereo for the same original price and
HACTEHA [7]

Answer:

Store A gives $17.19 more off then Store B

Step-by-step explanation:

573.00 x 25% = 143.25

573.00-143.25 =429.75 Store A

Store B is 446.94

3 0
3 years ago
Write in simplest radical form: √208
Arte-miy333 [17]

208:2=104\\104:2=52\\52:2=26\\26:2=13\\13:13=1\\\\208=2\cdot2\cdot2\cdot2\cdot13=2^2\cdot2^2\cdot13\\\\\sqrt{208}=\sqrt{2^2\cdot2^2\cdot13}=\sqrt{2^2}\cdot\sqrt{2^2}\cdot\sqrt{13}=2\cdot2\cdot\sqrt{13}=4\sqrt{13}\\\\Answer:\ \sqrt{208}=4\sqrt{13}\\\\Used:\\\sqrt{ab}=\sqrt{a}\cdot\sqrt{b}\\\\\sqrt{a^2}=a

6 0
4 years ago
Use the Rules of Special right triangles to find x and y 6) у 30° 4 [ Select] [ Select] y =​
storchak [24]

Answer:6.6 y

Step-by-step explanation:

6 0
2 years ago
Helppp me plssss because it’s a test
Ad libitum [116K]

Answer:

3

Step-by-step explanation:

3 0
3 years ago
Other questions:
  • Write the equation of the line fully simplified slope-intercept form
    7·1 answer
  • Help again guys hurry
    8·1 answer
  • Simplify the expression
    15·1 answer
  • The value of the digit 9 in the number 349320 is 10 times the value of the digit 9 in which number
    5·1 answer
  • Aaron buys 2 t-shirts for $10.50 each, a 3-pack of socks for $7.95, what is the total cost of Aaron’s purchases?
    11·2 answers
  • the weather forecaster say that it is 200 C on Mars. Neptune is 7/10 as hot as mars. how hot is it in Neptune
    7·1 answer
  • Help I appreciate it thank you
    12·1 answer
  • The perimeter of a square is 109.8 square inches. what is the length of one square? A 2.74 in B 10.98 in C 25 in D 27.45 in
    6·2 answers
  • Jack typed 45 words in 1 minute. how many minutes will it take jack to type 990 words
    8·2 answers
  • Dont answer, didnt mean to make this
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!