1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Paha777 [63]
3 years ago
10

Calculus, question 5 to 5a​

Mathematics
1 answer:
Llana [10]3 years ago
4 0

5. Let x = \sin(\theta). Note that we want this variable change to be reversible, so we tacitly assume 0 ≤ θ ≤ π/2. Then

\cos(\theta) = \sqrt{1 - \sin^2(\theta)} = \sqrt{1 - x^2}

and dx = \cos(\theta) \, d\theta. So the integral transforms to

\displaystyle \int \frac{x^3}{\sqrt{1-x^2}} \, dx = \int \frac{\sin^3(\theta)}{\cos(\theta)} \cos(\theta) \, d\theta = \int \sin^3(\theta) \, d\theta

Reduce the power by writing

\sin^3(\theta) = \sin(\theta) \sin^2(\theta) = \sin(\theta) (1 - \cos^2(\theta))

Now let y = \cos(\theta), so that dy = -\sin(\theta) \, d\theta. Then

\displaystyle \int \sin(\theta) (1-\cos^2(\theta)) \, d\theta = - \int (1-y^2) \, dy = -y + \frac13 y^3 + C

Replace the variable to get the antiderivative back in terms of x and we have

\displaystyle \int \frac{x^3}{\sqrt{1-x^2}} \, dx = -\cos(\theta) + \frac13 \cos^3(\theta) + C

\displaystyle \int \frac{x^3}{\sqrt{1-x^2}} \, dx = -\sqrt{1-x^2} + \frac13 \left(\sqrt{1-x^2}\right)^3 + C

\displaystyle \int \frac{x^3}{\sqrt{1-x^2}} \, dx = -\frac13 \sqrt{1-x^2} \left(3 - \left(\sqrt{1-x^2}\right)^2\right) + C

\displaystyle \int \frac{x^3}{\sqrt{1-x^2}} \, dx = \boxed{-\frac13 \sqrt{1-x^2} (2+x^2) + C}

6. Let x = 3\tan(\theta) and dx=3\sec^2(\theta)\,d\theta. It follows that

\cos(\theta) = \dfrac1{\sec(\theta)} = \dfrac1{\sqrt{1+\tan^2(\theta)}} = \dfrac3{\sqrt{9+x^2}}

since, like in the previous integral, under this reversible variable change we assume -π/2 < θ < π/2. Over this interval, sec(θ) is positive.

Now,

\displaystyle \int \frac{x^3}{\sqrt{9+x^2}} \, dx = \int \frac{27\tan^3(\theta)}{\sqrt{9+9\tan^2(\theta)}} 3\sec^2(\theta) \, d\theta = 27 \int \frac{\tan^3(\theta) \sec^2(\theta)}{\sqrt{1+\tan^2(\theta)}} \, d\theta

The denominator reduces to

\sqrt{1+\tan^2(\theta)} = \sqrt{\sec^2(\theta)} = |\sec(\theta)| = \sec(\theta)

and so

\displaystyle 27 \int \tan^3(\theta) \sec(\theta) \, d\theta = 27 \int \frac{\sin^3(\theta)}{\cos^4(\theta)} \, d\theta

Rewrite sin³(θ) just like before,

\displaystyle 27 \int \frac{\sin(\theta) (1-\cos^2(\theta))}{\cos^4(\theta)} \, d\theta

and substitute y=\cos(\theta) again to get

\displaystyle -27 \int \frac{1-y^2}{y^4} \, dy = 27 \int \left(\frac1{y^2} - \frac1{y^4}\right) \, dy = 27 \left(\frac1{3y^3} - \frac1y\right) + C

Put everything back in terms of x :

\displaystyle \int \frac{x^3}{\sqrt{9+x^2}} \, dx = 9 \left(\frac1{\cos^3(\theta)} - \frac3{\cos(\theta)}\right) + C

\displaystyle \int \frac{x^3}{\sqrt{9+x^2}} \, dx = 9 \left(\frac{\left(\sqrt{9+x^2}\right)^3}{27} - \sqrt{9+x^2}\right) + C

\displaystyle \int \frac{x^3}{\sqrt{9+x^2}} \, dx = \boxed{\frac13 \sqrt{9+x^2} (x^2 - 18) + C}

2(b). For some constants a, b, c, and d, we have

\dfrac1{x^2+x^4} = \dfrac1{x^2(1+x^2)} = \boxed{\dfrac ax + \dfrac b{x^2} + \dfrac{cx+d}{x^2+1}}

3(a). For some constants a, b, and c,

\dfrac{x^2+4}{x^3-3x^2+2x} = \dfrac{x^2+4}{x(x-1)(x-2)} = \boxed{\dfrac ax + \dfrac b{x-1} + \dfrac c{x-2}}

5(a). For some constants a-f,

\dfrac{x^5+1}{(x^2-x)(x^4+2x^2+1)} = \dfrac{x^5+1}{x(x-1)(x+1)(x^2+1)^2} \\\\ = \dfrac{x^4 - x^3 + x^2 - x + 1}{x(x-1)(x^2+1)^2} = \boxed{\dfrac ax + \dfrac b{x-1} + \dfrac{cx+d}{x^2+1} + \dfrac{ex+f}{(x^2+1)^2}}

where we use the sum-of-5th-powers identity,

a^5 + b^5 = (a+b) (a^4-a^3b+a^2b^2-ab^3+b^4)

You might be interested in
Let f(x) =2x-2. Graph g(x)= f(x+1)
Ghella [55]

Answer:

itself was just<em><u> </u></em><em><u>an</u></em><em><u> </u></em><em><u>awesome</u></em><em><u> </u></em><em><u>game</u></em><em><u> </u></em><em><u>that</u></em><em><u> </u></em><em><u>had</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>game</u></em><em><u> </u></em><em><u>in</u></em><em><u> </u></em><em><u>one</u></em><em><u> </u></em><em><u>game</u></em><em><u> </u></em><em><u>for</u></em><em><u> </u></em><em><u>my</u></em><em><u> </u></em><em><u>friends</u></em><em><u>.</u></em>

5 0
3 years ago
Least common multiple of z^2+6z+9 and z^2+z-6
Firdavs [7]
Hint:    \bf \begin{array}{ccllll}&#10;z^2+6z+9&z^2+z-6\\&#10;\downarrow &\downarrow \\&#10;(z+3)(z+3)&\underline{(z+3)(z-2)}&#10;\end{array}
5 0
3 years ago
SOMEONE ANSWER QUICK!!
aleksandrvk [35]

Answer:

3/4 of a pizza leftover.

Step-by-step explanation:

2 7/12 + 2/3 = 3 1/4

4 -  3 1/4 = 3/4

so 3/4 of 1 pizza is left.

6 0
3 years ago
A teacher starts on a salary of $25000. each year the teacher gets a pay rise of $1500. the teacher is employed for 30 years.
nordsb [41]

Answer:

A bachelor's degree with a licensure in your state is enough to be a teacher, but it is also the most basic qualification and will earn you the most basic salary. Teachers looking to increase their salary may benefit from a ...

3 0
3 years ago
Use a 95​% prediction interval to predict the useful life of a brand A cutting tool when the cutting speed is 45 meters per minu
qwelly [4]

Answer:

<em>The answer resides in the explanation.</em>

<em>Pls rate as brainliest </em>

Step-by-step explanation:

The predicted useful life of a brand A cutting tool when the speed is 45 meters per minute is 1.2 to 5.5 hours.

The predicted useful life of a brand B cutting tool when the speed is 45 meters per minute is 3.4 to 5.4 hours.

The prediction interval for brand A is larger than the prediction interval for brand B because the estimated standard error of  y^ is different for the two intervals.

The prediction intervals are both larger than the corresponding confidence intervals.

The standard error for the estimated mean value of y is smaller than the standard error for the predicted value of y.

The predicted useful life of a brand A cutting tool that is operated at 100  meters per minute is -0.59 hours

The actual predicted useful life of a brand A cutting tool when the speed is 100 meters per minute is 0.0 to 2.3 hours.

6 0
3 years ago
Other questions:
  • Please help me with this. Not very good with scatter plots.
    12·1 answer
  • -21 is located to the right or left of -20
    14·1 answer
  • A __________a0 function forms a line when graphed.
    13·1 answer
  • Lines and are parallel. The slope of line is 1/3. What is the slope of line ?
    11·2 answers
  • Need help please will give brainliest answer!
    6·1 answer
  • Starting with the number 100, Shaffiq repeatedly divides his number by two and then takes the greatest integer less than or equa
    5·1 answer
  • Mr. Goggins planted 10 rows of beans, 10 rows of squash, 10 rows of
    10·2 answers
  • QUICK HELP I NEED TO ANSWER THIS QUESTION<br><br><br><br> WHO ASKED???
    7·1 answer
  • Which is the ordered pair that represents a point whose x-coordinate is the opposite of its y-coordinate and is located in Quadr
    8·1 answer
  • Error error error error
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!