1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Paha777 [63]
2 years ago
10

Calculus, question 5 to 5a​

Mathematics
1 answer:
Llana [10]2 years ago
4 0

5. Let x = \sin(\theta). Note that we want this variable change to be reversible, so we tacitly assume 0 ≤ θ ≤ π/2. Then

\cos(\theta) = \sqrt{1 - \sin^2(\theta)} = \sqrt{1 - x^2}

and dx = \cos(\theta) \, d\theta. So the integral transforms to

\displaystyle \int \frac{x^3}{\sqrt{1-x^2}} \, dx = \int \frac{\sin^3(\theta)}{\cos(\theta)} \cos(\theta) \, d\theta = \int \sin^3(\theta) \, d\theta

Reduce the power by writing

\sin^3(\theta) = \sin(\theta) \sin^2(\theta) = \sin(\theta) (1 - \cos^2(\theta))

Now let y = \cos(\theta), so that dy = -\sin(\theta) \, d\theta. Then

\displaystyle \int \sin(\theta) (1-\cos^2(\theta)) \, d\theta = - \int (1-y^2) \, dy = -y + \frac13 y^3 + C

Replace the variable to get the antiderivative back in terms of x and we have

\displaystyle \int \frac{x^3}{\sqrt{1-x^2}} \, dx = -\cos(\theta) + \frac13 \cos^3(\theta) + C

\displaystyle \int \frac{x^3}{\sqrt{1-x^2}} \, dx = -\sqrt{1-x^2} + \frac13 \left(\sqrt{1-x^2}\right)^3 + C

\displaystyle \int \frac{x^3}{\sqrt{1-x^2}} \, dx = -\frac13 \sqrt{1-x^2} \left(3 - \left(\sqrt{1-x^2}\right)^2\right) + C

\displaystyle \int \frac{x^3}{\sqrt{1-x^2}} \, dx = \boxed{-\frac13 \sqrt{1-x^2} (2+x^2) + C}

6. Let x = 3\tan(\theta) and dx=3\sec^2(\theta)\,d\theta. It follows that

\cos(\theta) = \dfrac1{\sec(\theta)} = \dfrac1{\sqrt{1+\tan^2(\theta)}} = \dfrac3{\sqrt{9+x^2}}

since, like in the previous integral, under this reversible variable change we assume -π/2 < θ < π/2. Over this interval, sec(θ) is positive.

Now,

\displaystyle \int \frac{x^3}{\sqrt{9+x^2}} \, dx = \int \frac{27\tan^3(\theta)}{\sqrt{9+9\tan^2(\theta)}} 3\sec^2(\theta) \, d\theta = 27 \int \frac{\tan^3(\theta) \sec^2(\theta)}{\sqrt{1+\tan^2(\theta)}} \, d\theta

The denominator reduces to

\sqrt{1+\tan^2(\theta)} = \sqrt{\sec^2(\theta)} = |\sec(\theta)| = \sec(\theta)

and so

\displaystyle 27 \int \tan^3(\theta) \sec(\theta) \, d\theta = 27 \int \frac{\sin^3(\theta)}{\cos^4(\theta)} \, d\theta

Rewrite sin³(θ) just like before,

\displaystyle 27 \int \frac{\sin(\theta) (1-\cos^2(\theta))}{\cos^4(\theta)} \, d\theta

and substitute y=\cos(\theta) again to get

\displaystyle -27 \int \frac{1-y^2}{y^4} \, dy = 27 \int \left(\frac1{y^2} - \frac1{y^4}\right) \, dy = 27 \left(\frac1{3y^3} - \frac1y\right) + C

Put everything back in terms of x :

\displaystyle \int \frac{x^3}{\sqrt{9+x^2}} \, dx = 9 \left(\frac1{\cos^3(\theta)} - \frac3{\cos(\theta)}\right) + C

\displaystyle \int \frac{x^3}{\sqrt{9+x^2}} \, dx = 9 \left(\frac{\left(\sqrt{9+x^2}\right)^3}{27} - \sqrt{9+x^2}\right) + C

\displaystyle \int \frac{x^3}{\sqrt{9+x^2}} \, dx = \boxed{\frac13 \sqrt{9+x^2} (x^2 - 18) + C}

2(b). For some constants a, b, c, and d, we have

\dfrac1{x^2+x^4} = \dfrac1{x^2(1+x^2)} = \boxed{\dfrac ax + \dfrac b{x^2} + \dfrac{cx+d}{x^2+1}}

3(a). For some constants a, b, and c,

\dfrac{x^2+4}{x^3-3x^2+2x} = \dfrac{x^2+4}{x(x-1)(x-2)} = \boxed{\dfrac ax + \dfrac b{x-1} + \dfrac c{x-2}}

5(a). For some constants a-f,

\dfrac{x^5+1}{(x^2-x)(x^4+2x^2+1)} = \dfrac{x^5+1}{x(x-1)(x+1)(x^2+1)^2} \\\\ = \dfrac{x^4 - x^3 + x^2 - x + 1}{x(x-1)(x^2+1)^2} = \boxed{\dfrac ax + \dfrac b{x-1} + \dfrac{cx+d}{x^2+1} + \dfrac{ex+f}{(x^2+1)^2}}

where we use the sum-of-5th-powers identity,

a^5 + b^5 = (a+b) (a^4-a^3b+a^2b^2-ab^3+b^4)

You might be interested in
If P(A)=0.4, P(A and B)=0.2,and P(A or B)=0.5, What is P(B)
Vladimir [108]

Answer:

\boxed{\ P(B)=0.3 \ }

Step-by-step explanation:

Hi,

We know that

P(A or B)=P(A)+P(B)-P(A and B)

so P(B)= P(A or B) - P(A) + P(A and B)

so

P(B) = 0.5 - 0.4 + 0.2 = 0.3

thanks

6 0
3 years ago
Write a linear function f with the values f(−1)=8 and f(5)=6.<br><br> A function is f(x)=
german

9514 1404 393

Answer:

  f(x) = -1/3x +23/3

Step-by-step explanation:

You can use the linear regression function of a graphing calculator or spreadsheet to show you the equation of the line through these points:

  f(x) = -1/3x +23/3

__

Approaching this in the usual way, we recognize we have points ...

  (-1, 8) and (5, 6)

The slope of the line through those points is ...

  m = (y2 -y1)/(x2 -x1)

  m = (6 -8)/(5 -(-1)) = -2/6 = -1/3

Then the point-slope equation of the line is ...

  y - 8 = -1/3(x +1)

Adding 8 gives us a form we can use for a function definition:

  f(x) = -1/3(x +1) +8

  f(x) = -1/3x +7 2/3

8 0
2 years ago
3.
nasty-shy [4]

Answer:

y    

Step-by-step explanation:

6 0
2 years ago
PLEASE HELP I DONT KNOW
riadik2000 [5.3K]

Answer:

d, diameter

Step-by-step explanation:

radius is half of a diameter, or the distance from the center of the circle to the circumference

circle is a... circle

center is...

5 0
3 years ago
Read 2 more answers
Question 13 y-5x= -4
Julli [10]

Which variable are we solving for?

For y:

y= 5x-4/ 13


For x:

x= 13y+4/ 5



5 0
3 years ago
Other questions:
  • Please help me With ALL questions quick ASAP!!!!!!!!<br> Questions 1-5
    9·1 answer
  • Oro's book club was offering a special on books this month. He bought 5 for $0.98 each and then a regular book for $19.29. His t
    7·1 answer
  • Gordan types 43 3/4 pages in 3 1/2 hours. what is the rate in pages per hour
    5·1 answer
  • Tonya's grandma has two pieces of cloth. She wants to estimate how much longer one piece is than the other. She will estimate to
    12·1 answer
  • Need help on geomtry homework
    12·2 answers
  • A section of a rectangle is shaded.
    15·1 answer
  • Write the exponential function for each table of values. Remember the function y = a(b)*
    6·1 answer
  • 100 points<br> answer the questions
    13·2 answers
  • I need help asap!!!!!!!!!
    13·1 answer
  • 1. temperature in region 12 rises up to 36 ​
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!