1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Paha777 [63]
2 years ago
10

Calculus, question 5 to 5a​

Mathematics
1 answer:
Llana [10]2 years ago
4 0

5. Let x = \sin(\theta). Note that we want this variable change to be reversible, so we tacitly assume 0 ≤ θ ≤ π/2. Then

\cos(\theta) = \sqrt{1 - \sin^2(\theta)} = \sqrt{1 - x^2}

and dx = \cos(\theta) \, d\theta. So the integral transforms to

\displaystyle \int \frac{x^3}{\sqrt{1-x^2}} \, dx = \int \frac{\sin^3(\theta)}{\cos(\theta)} \cos(\theta) \, d\theta = \int \sin^3(\theta) \, d\theta

Reduce the power by writing

\sin^3(\theta) = \sin(\theta) \sin^2(\theta) = \sin(\theta) (1 - \cos^2(\theta))

Now let y = \cos(\theta), so that dy = -\sin(\theta) \, d\theta. Then

\displaystyle \int \sin(\theta) (1-\cos^2(\theta)) \, d\theta = - \int (1-y^2) \, dy = -y + \frac13 y^3 + C

Replace the variable to get the antiderivative back in terms of x and we have

\displaystyle \int \frac{x^3}{\sqrt{1-x^2}} \, dx = -\cos(\theta) + \frac13 \cos^3(\theta) + C

\displaystyle \int \frac{x^3}{\sqrt{1-x^2}} \, dx = -\sqrt{1-x^2} + \frac13 \left(\sqrt{1-x^2}\right)^3 + C

\displaystyle \int \frac{x^3}{\sqrt{1-x^2}} \, dx = -\frac13 \sqrt{1-x^2} \left(3 - \left(\sqrt{1-x^2}\right)^2\right) + C

\displaystyle \int \frac{x^3}{\sqrt{1-x^2}} \, dx = \boxed{-\frac13 \sqrt{1-x^2} (2+x^2) + C}

6. Let x = 3\tan(\theta) and dx=3\sec^2(\theta)\,d\theta. It follows that

\cos(\theta) = \dfrac1{\sec(\theta)} = \dfrac1{\sqrt{1+\tan^2(\theta)}} = \dfrac3{\sqrt{9+x^2}}

since, like in the previous integral, under this reversible variable change we assume -π/2 < θ < π/2. Over this interval, sec(θ) is positive.

Now,

\displaystyle \int \frac{x^3}{\sqrt{9+x^2}} \, dx = \int \frac{27\tan^3(\theta)}{\sqrt{9+9\tan^2(\theta)}} 3\sec^2(\theta) \, d\theta = 27 \int \frac{\tan^3(\theta) \sec^2(\theta)}{\sqrt{1+\tan^2(\theta)}} \, d\theta

The denominator reduces to

\sqrt{1+\tan^2(\theta)} = \sqrt{\sec^2(\theta)} = |\sec(\theta)| = \sec(\theta)

and so

\displaystyle 27 \int \tan^3(\theta) \sec(\theta) \, d\theta = 27 \int \frac{\sin^3(\theta)}{\cos^4(\theta)} \, d\theta

Rewrite sin³(θ) just like before,

\displaystyle 27 \int \frac{\sin(\theta) (1-\cos^2(\theta))}{\cos^4(\theta)} \, d\theta

and substitute y=\cos(\theta) again to get

\displaystyle -27 \int \frac{1-y^2}{y^4} \, dy = 27 \int \left(\frac1{y^2} - \frac1{y^4}\right) \, dy = 27 \left(\frac1{3y^3} - \frac1y\right) + C

Put everything back in terms of x :

\displaystyle \int \frac{x^3}{\sqrt{9+x^2}} \, dx = 9 \left(\frac1{\cos^3(\theta)} - \frac3{\cos(\theta)}\right) + C

\displaystyle \int \frac{x^3}{\sqrt{9+x^2}} \, dx = 9 \left(\frac{\left(\sqrt{9+x^2}\right)^3}{27} - \sqrt{9+x^2}\right) + C

\displaystyle \int \frac{x^3}{\sqrt{9+x^2}} \, dx = \boxed{\frac13 \sqrt{9+x^2} (x^2 - 18) + C}

2(b). For some constants a, b, c, and d, we have

\dfrac1{x^2+x^4} = \dfrac1{x^2(1+x^2)} = \boxed{\dfrac ax + \dfrac b{x^2} + \dfrac{cx+d}{x^2+1}}

3(a). For some constants a, b, and c,

\dfrac{x^2+4}{x^3-3x^2+2x} = \dfrac{x^2+4}{x(x-1)(x-2)} = \boxed{\dfrac ax + \dfrac b{x-1} + \dfrac c{x-2}}

5(a). For some constants a-f,

\dfrac{x^5+1}{(x^2-x)(x^4+2x^2+1)} = \dfrac{x^5+1}{x(x-1)(x+1)(x^2+1)^2} \\\\ = \dfrac{x^4 - x^3 + x^2 - x + 1}{x(x-1)(x^2+1)^2} = \boxed{\dfrac ax + \dfrac b{x-1} + \dfrac{cx+d}{x^2+1} + \dfrac{ex+f}{(x^2+1)^2}}

where we use the sum-of-5th-powers identity,

a^5 + b^5 = (a+b) (a^4-a^3b+a^2b^2-ab^3+b^4)

You might be interested in
Determine the rate of change between the points (-1,-1) and (1,-1).
AVprozaik [17]

Answer:

\displaystyle m = 0

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

Coordinate Planes

  • Coordinates (x, y)
  • Slope Formula: \displaystyle m = \frac{y_2 - y_1}{x_2 - x_1}

Step-by-step explanation:

*Note:

Rate of change is slope.

<u />

<u>Step 1: Define</u>

<em>Identify.</em>

Point (-1, -1)

Point (1, -1)

<u>Step 2: Find slope </u><em><u>m</u></em>

Simply plug in the 2 coordinates into the slope formula to find slope <em>m</em>.

  1. Substitute in points [Slope Formula]:                                                              \displaystyle m = \frac{-1 + 1}{1 + 1}
  2. [Order of Operations] Simplify:                                                                        \displaystyle m = \frac{0}{2}
  3. Simplify:                                                                                                             \displaystyle m = 0
4 0
2 years ago
Find the difference: (6y3 + 17y − 3) − (4y3 − 11y + 9)
earnstyle [38]
<span>(6y3 + 17y − 3) − (4y3 − 11y + 9)
</span>= 6y3 + 17y − 3 − 4y3 + 11y - 9
= 2y3 + 28y  - 12
3 0
3 years ago
Which order pair is the solution of the system of equations shown?ITS DUE TONIGHT HELP
kap26 [50]

Answer:

Step-by-step explanation:

-x + 5 = 5x - 6

-6x + 5 = -6

-6x = -11

6x = 11

x = 11/6

-11/6 + 30/6= 19/6

(11/6, 19/6)

answer is C

6 0
3 years ago
Read 2 more answers
How do i find the weight
Alla [95]
Convert it then you will fine the weight.
4 0
3 years ago
Show the expression as the base to one power.
coldgirl [10]

Step-by-step explanation:

{4}^{5}. {4}^{3 } =  {4}^{5 + 3} =  {4}^{8}

6 0
3 years ago
Other questions:
  • Is 8.23 a rational number?
    7·2 answers
  • An arc on a circle measures 125°. The measure of the central angle, in radians, is within which range? 0 to StartFraction pi Ove
    10·2 answers
  • IM LITERALLY ALMOST DONE CAN SOMEONE PLS TELL ME WHAT THE SURFACE AREA FORMULA IS FOR THIS FIGURE I'VE MISSED THIS TIME AND TIME
    14·1 answer
  • Solve 2(x + 1) = 2x + 5.
    12·2 answers
  • ** I need help for this one***
    14·2 answers
  • 50 POINTS: Please help thank you so much!! (Image attached) The polygons are similar. Find the values of the variables.
    8·1 answer
  • Anyone wanna help :D
    10·1 answer
  • find the equation of a line that passes through the points (3,7) and (5,3). Leave your answer in the form y=mx+c​
    14·1 answer
  • Please help me please !
    15·1 answer
  • 3+7(0.7+1.3)<br> What is the answer and how to solve it?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!