1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pshichka [43]
3 years ago
5

Mrs Davis invests 15,000 into a savings account that pays 7%interest for 3 years how much interest does mrs Davis earn

Mathematics
1 answer:
ahrayia [7]3 years ago
6 0

Answer:

  3,150

Step-by-step explanation:

The amount of interest earned by the account is found using the interest formula:

  I = Prt . . . . where P is the principal invested at rate r for t years

__

Using the given values, we find the interest to be ...

  I = 15,000×0.07×3 = 3,150

Mrs Davis earns 3,150 on her investment.

You might be interested in
Can someone check my answers it’s about writing proofs and it’s just full in the blanks.
Darina [25.2K]
It seems correct to me- i don’t see anything wrong so far
6 0
2 years ago
Read 2 more answers
Help with num 3 please. thanks​
Alja [10]

Answer:

a)  \displaystyle \frac{dy}{dx} \bigg| \limits_{x = 0} = -1

b)  \displaystyle \frac{dy}{dx} \bigg| \limits_{x = \frac{\pi}{2}} = -1

General Formulas and Concepts:

<u>Pre-Calculus</u>

  • Unit Circle

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹  

Derivative Rule [Product Rule]:                                                                             \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Derivative Rule [Quotient Rule]:                                                                           \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Derivative Rule [Chain Rule]:                                                                                 \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Trigonometric Differentiation

Logarithmic Differentiation

Step-by-step explanation:

a)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = ln \bigg( \frac{1 - x}{\sqrt{1 + x^2}} \bigg)

<u>Step 2: Differentiate</u>

  1. Logarithmic Differentiation [Chain Rule]:                                                     \displaystyle \frac{dy}{dx} = \frac{1}{\frac{1 - x}{\sqrt{1 + x^2}}} \cdot \frac{d}{dx}[\frac{1 - x}{\sqrt{1 + x^2}}]
  2. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \frac{d}{dx}[\frac{1 - x}{\sqrt{1 + x^2}}]
  3. Quotient Rule:                                                                                               \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \frac{(1 - x)'\sqrt{1 + x^2} - (1 - x)(\sqrt{1 + x^2})'}{(\sqrt{1 + x^2})^2}
  4. Basic Power Rule [Chain Rule]:                                                                     \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \frac{-\sqrt{1 + x^2} - (1 - x)(\frac{x}{\sqrt{x^2 + 1}})}{(\sqrt{1 + x^2})^2}
  5. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \bigg( \frac{x(x - 1)}{(x^2 + 1)^\bigg{\frac{3}{2}}} - \frac{1}{\sqrt{x^2 + 1}} \bigg)
  6. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{x + 1}{(x - 1)(x^2 + 1)}

<u>Step 3: Find</u>

  1. Substitute in <em>x</em> = 0 [Derivative]:                                                                     \displaystyle \frac{dy}{dx} \bigg| \limit_{x = 0} = \frac{0 + 1}{(0 - 1)(0^2 + 1)}
  2. Evaluate:                                                                                                         \displaystyle \frac{dy}{dx} \bigg| \limits_{x = 0} = -1

b)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = ln \bigg( \frac{1 + sinx}{1 - cosx} \bigg)

<u>Step 2: Differentiate</u>

  1. Logarithmic Differentiation [Chain Rule]:                                                     \displaystyle \frac{dy}{dx} = \frac{1}{\frac{1 + sinx}{1 - cosx}} \cdot \frac{d}{dx}[\frac{1 + sinx}{1 - cosx}]
  2. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - 1]}{sin(x) + 1} \cdot \frac{d}{dx}[\frac{1 + sinx}{1 - cosx}]
  3. Quotient Rule:                                                                                               \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - 1]}{sin(x) + 1} \cdot \frac{(1 + sinx)'(1 - cosx) - (1 + sinx)(1 - cosx)'}{(1 - cosx)^2}
  4. Trigonometric Differentiation:                                                                       \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - 1]}{sin(x) + 1} \cdot \frac{cos(x)(1 - cosx) - sin(x)(1 + sinx)}{(1 - cosx)^2}
  5. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - sin(x) - 1]}{[sin(x) + 1][cos(x) - 1]}

<u>Step 3: Find</u>

  1. Substitute in <em>x</em> = π/2 [Derivative]:                                                                 \displaystyle \frac{dy}{dx} \bigg| \limit_{x = \frac{\pi}{2}} = \frac{-[cos(\frac{\pi}{2}) - sin(\frac{\pi}{2}) - 1]}{[sin(\frac{\pi}{2}) + 1][cos(\frac{\pi}{2}) - 1]}
  2. Evaluate [Unit Circle]:                                                                                   \displaystyle \frac{dy}{dx} \bigg| \limit_{x = \frac{\pi}{2}} = -1

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

Book: College Calculus 10e

4 0
3 years ago
the ratio of girls to boys in a grade is 6 to 5. If there are 24 girls in the grade then how many students are there altogether?
gtnhenbr [62]

Answer:

39

Step-by-step explanation:

3 0
3 years ago
-8 (1+11a)?????????????????
sdas [7]
The answer would be -8+-88a
3 0
4 years ago
Read 2 more answers
Ms. LaTrace teaches her 27 students to make folded-paper princesses. Each student can make about 2 princesses in 1 minute. ABOUT
saveliy_v [14]

Answer:

About 2970 princesses

Step-by-step explanation:

This is calculated as:

For 1 student:

1 minute = 2 princesses

55 minutes = x princesses

x = 55 × 2 princesses

x = 110 princesses.

Hence: 1 student can make 110 princesses in 55 minutes.

The amount of princesses all the students make in 55 minutes is calculated as:

1 student = 110 princesses

27 students = x

x = 27 × 110 princesses

x = 2970 princesses

The amount of princesses all the students make in 55 minutes is about 2970 princesses.

5 0
3 years ago
Other questions:
  • The brand manager for a brand of toothpaste must plan a campaign designed to increase brand recognition. He wants to first deter
    7·1 answer
  • The Students at Winwood elementary school collected 574 cans of food in 20 days for a food drive. What was average number of can
    10·2 answers
  • Isabel is riding on a bike course that is 36 miles long. So far , she has ridden 9 miles of the course. What Percentage of the c
    13·2 answers
  • Please help me with these problems!
    5·2 answers
  • In △ABC, m∠A=44°, m∠B=48°, and a=25. Find c to the nearest tenth.
    7·1 answer
  • A total of 250 people were surveyed about whether or not each person carries a cell phone.
    8·1 answer
  • (7+ 1 4) + 6 = 7 ( ■ + 1 6)
    9·1 answer
  • Which of the following numbers are considered integers? Please choose all that apply.
    11·1 answer
  • I don't know how to solve it.
    11·1 answer
  • Marcia bought a car for £34500 and sold it for £29700. what was her percentage loss?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!