1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gala2k [10]
2 years ago
11

Help with num 3 please. thanks​

Mathematics
1 answer:
Alja [10]2 years ago
4 0

Answer:

a)  \displaystyle \frac{dy}{dx} \bigg| \limits_{x = 0} = -1

b)  \displaystyle \frac{dy}{dx} \bigg| \limits_{x = \frac{\pi}{2}} = -1

General Formulas and Concepts:

<u>Pre-Calculus</u>

  • Unit Circle

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹  

Derivative Rule [Product Rule]:                                                                             \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Derivative Rule [Quotient Rule]:                                                                           \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Derivative Rule [Chain Rule]:                                                                                 \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Trigonometric Differentiation

Logarithmic Differentiation

Step-by-step explanation:

a)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = ln \bigg( \frac{1 - x}{\sqrt{1 + x^2}} \bigg)

<u>Step 2: Differentiate</u>

  1. Logarithmic Differentiation [Chain Rule]:                                                     \displaystyle \frac{dy}{dx} = \frac{1}{\frac{1 - x}{\sqrt{1 + x^2}}} \cdot \frac{d}{dx}[\frac{1 - x}{\sqrt{1 + x^2}}]
  2. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \frac{d}{dx}[\frac{1 - x}{\sqrt{1 + x^2}}]
  3. Quotient Rule:                                                                                               \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \frac{(1 - x)'\sqrt{1 + x^2} - (1 - x)(\sqrt{1 + x^2})'}{(\sqrt{1 + x^2})^2}
  4. Basic Power Rule [Chain Rule]:                                                                     \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \frac{-\sqrt{1 + x^2} - (1 - x)(\frac{x}{\sqrt{x^2 + 1}})}{(\sqrt{1 + x^2})^2}
  5. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \bigg( \frac{x(x - 1)}{(x^2 + 1)^\bigg{\frac{3}{2}}} - \frac{1}{\sqrt{x^2 + 1}} \bigg)
  6. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{x + 1}{(x - 1)(x^2 + 1)}

<u>Step 3: Find</u>

  1. Substitute in <em>x</em> = 0 [Derivative]:                                                                     \displaystyle \frac{dy}{dx} \bigg| \limit_{x = 0} = \frac{0 + 1}{(0 - 1)(0^2 + 1)}
  2. Evaluate:                                                                                                         \displaystyle \frac{dy}{dx} \bigg| \limits_{x = 0} = -1

b)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = ln \bigg( \frac{1 + sinx}{1 - cosx} \bigg)

<u>Step 2: Differentiate</u>

  1. Logarithmic Differentiation [Chain Rule]:                                                     \displaystyle \frac{dy}{dx} = \frac{1}{\frac{1 + sinx}{1 - cosx}} \cdot \frac{d}{dx}[\frac{1 + sinx}{1 - cosx}]
  2. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - 1]}{sin(x) + 1} \cdot \frac{d}{dx}[\frac{1 + sinx}{1 - cosx}]
  3. Quotient Rule:                                                                                               \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - 1]}{sin(x) + 1} \cdot \frac{(1 + sinx)'(1 - cosx) - (1 + sinx)(1 - cosx)'}{(1 - cosx)^2}
  4. Trigonometric Differentiation:                                                                       \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - 1]}{sin(x) + 1} \cdot \frac{cos(x)(1 - cosx) - sin(x)(1 + sinx)}{(1 - cosx)^2}
  5. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - sin(x) - 1]}{[sin(x) + 1][cos(x) - 1]}

<u>Step 3: Find</u>

  1. Substitute in <em>x</em> = π/2 [Derivative]:                                                                 \displaystyle \frac{dy}{dx} \bigg| \limit_{x = \frac{\pi}{2}} = \frac{-[cos(\frac{\pi}{2}) - sin(\frac{\pi}{2}) - 1]}{[sin(\frac{\pi}{2}) + 1][cos(\frac{\pi}{2}) - 1]}
  2. Evaluate [Unit Circle]:                                                                                   \displaystyle \frac{dy}{dx} \bigg| \limit_{x = \frac{\pi}{2}} = -1

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

Book: College Calculus 10e

You might be interested in
Find the areas of the shapes​
likoan [24]

Answer:

both shape together equals 234

Step-by-step explanation:

trapezoid= 14+10/2*4=34

rectangle=10*20=200

8 0
2 years ago
What number divided by 5 equals 7
Verizon [17]

35 . because 5 times 7 equal 35 so 35 divide by 7 equal 35
3 0
3 years ago
(NO LINKS)!~Brainliest IF YOU CAN SIMPLIFY AND SOLVE FOR THE UNKNOWN~!(3 + 5)² + [8 - 11] + Z = 4(Z - 2)
OleMash [197]

Answer:

(3+5) = 8 times 8 = 64 64+(8-11)+Z=64+(-3) + Z=62+z= 62+2 = 64

64

Step-by-step explanation:

7 0
2 years ago
Use the properties of logarithms to expand the following expression as much as possible. simplify any numerical expressions that
FinnZ [79.3K]
\bf log_{{  a}}(xy)\implies log_{{  a}}(x)+log_{{  a}}(y)&#10;\\ \quad \\\\&#10;% Logarithm of rationals&#10;log_{{  a}}\left(  \frac{x}{y}\right)\implies log_{{  a}}(x)-log_{{  a}}(y)&#10;\\ \quad \\\\&#10;% Logarithm of exponentials&#10;log_{{  a}}\left( x^{{  b}} \right)\implies {{  b}}\cdot  log_{{  a}}(x)\\\\&#10;-----------------------------\\\\&#10;ln\left( \cfrac{6x^9}{y^5} \right)\implies ln(6x^9)-ln(y^5)\implies ln(6)+ln(x^9)-ln(y^5)&#10;\\\\\\&#10;ln(6)+9ln(x)-5ln(y)
8 0
3 years ago
A circular pizza has a diameter of 12 inches . a pizza in the center of the pan has a radius of 4 inches . how much of the pan i
matrenka [14]
I think its 4.28537832453 
7 0
2 years ago
Other questions:
  • Which software can I use to produce Mathematical Images and shapes?
    15·2 answers
  • The formula to convert °F to °C is C = C equals StartFraction 5 Over 9 EndFraction left-parenthesis F minus 32 right-parenthesis
    6·2 answers
  • Due to the increase of posts on social media, the number of flip cell phones is in exponential decline. Data collected from 2009
    5·1 answer
  • Denise has $78.22. she wants to buy a computer that cost $29.99. about how much money will denise has left
    10·1 answer
  • What is the decimal representation of seven hundredths? A. 7. B. 700. C. 007. D. 07
    13·1 answer
  • Using the quadratic formula to solve x2 + 20 = 2x, what are the values of x?
    13·2 answers
  • What is the height of the box
    9·1 answer
  • On Tuesday, the Beef Market sold 400 pounds of prime rib steak at $9.98 per pound and 120 pounds of rib-eye steak at $6.49 per p
    6·1 answer
  • HELP ASAP will get brainly user !!!​
    6·2 answers
  • Select the correct answer.
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!