1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gala2k [10]
2 years ago
11

Help with num 3 please. thanks​

Mathematics
1 answer:
Alja [10]2 years ago
4 0

Answer:

a)  \displaystyle \frac{dy}{dx} \bigg| \limits_{x = 0} = -1

b)  \displaystyle \frac{dy}{dx} \bigg| \limits_{x = \frac{\pi}{2}} = -1

General Formulas and Concepts:

<u>Pre-Calculus</u>

  • Unit Circle

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹  

Derivative Rule [Product Rule]:                                                                             \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Derivative Rule [Quotient Rule]:                                                                           \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Derivative Rule [Chain Rule]:                                                                                 \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Trigonometric Differentiation

Logarithmic Differentiation

Step-by-step explanation:

a)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = ln \bigg( \frac{1 - x}{\sqrt{1 + x^2}} \bigg)

<u>Step 2: Differentiate</u>

  1. Logarithmic Differentiation [Chain Rule]:                                                     \displaystyle \frac{dy}{dx} = \frac{1}{\frac{1 - x}{\sqrt{1 + x^2}}} \cdot \frac{d}{dx}[\frac{1 - x}{\sqrt{1 + x^2}}]
  2. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \frac{d}{dx}[\frac{1 - x}{\sqrt{1 + x^2}}]
  3. Quotient Rule:                                                                                               \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \frac{(1 - x)'\sqrt{1 + x^2} - (1 - x)(\sqrt{1 + x^2})'}{(\sqrt{1 + x^2})^2}
  4. Basic Power Rule [Chain Rule]:                                                                     \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \frac{-\sqrt{1 + x^2} - (1 - x)(\frac{x}{\sqrt{x^2 + 1}})}{(\sqrt{1 + x^2})^2}
  5. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \bigg( \frac{x(x - 1)}{(x^2 + 1)^\bigg{\frac{3}{2}}} - \frac{1}{\sqrt{x^2 + 1}} \bigg)
  6. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{x + 1}{(x - 1)(x^2 + 1)}

<u>Step 3: Find</u>

  1. Substitute in <em>x</em> = 0 [Derivative]:                                                                     \displaystyle \frac{dy}{dx} \bigg| \limit_{x = 0} = \frac{0 + 1}{(0 - 1)(0^2 + 1)}
  2. Evaluate:                                                                                                         \displaystyle \frac{dy}{dx} \bigg| \limits_{x = 0} = -1

b)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = ln \bigg( \frac{1 + sinx}{1 - cosx} \bigg)

<u>Step 2: Differentiate</u>

  1. Logarithmic Differentiation [Chain Rule]:                                                     \displaystyle \frac{dy}{dx} = \frac{1}{\frac{1 + sinx}{1 - cosx}} \cdot \frac{d}{dx}[\frac{1 + sinx}{1 - cosx}]
  2. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - 1]}{sin(x) + 1} \cdot \frac{d}{dx}[\frac{1 + sinx}{1 - cosx}]
  3. Quotient Rule:                                                                                               \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - 1]}{sin(x) + 1} \cdot \frac{(1 + sinx)'(1 - cosx) - (1 + sinx)(1 - cosx)'}{(1 - cosx)^2}
  4. Trigonometric Differentiation:                                                                       \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - 1]}{sin(x) + 1} \cdot \frac{cos(x)(1 - cosx) - sin(x)(1 + sinx)}{(1 - cosx)^2}
  5. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - sin(x) - 1]}{[sin(x) + 1][cos(x) - 1]}

<u>Step 3: Find</u>

  1. Substitute in <em>x</em> = π/2 [Derivative]:                                                                 \displaystyle \frac{dy}{dx} \bigg| \limit_{x = \frac{\pi}{2}} = \frac{-[cos(\frac{\pi}{2}) - sin(\frac{\pi}{2}) - 1]}{[sin(\frac{\pi}{2}) + 1][cos(\frac{\pi}{2}) - 1]}
  2. Evaluate [Unit Circle]:                                                                                   \displaystyle \frac{dy}{dx} \bigg| \limit_{x = \frac{\pi}{2}} = -1

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

Book: College Calculus 10e

You might be interested in
Simplify the following numerical expressions.
Aleksandr-060686 [28]

Answer:

|7| - 7 = 0

2|-7| =  14

(-7)^2 =  49

-7-|-7|=  -14

-7-1-71= -79

Step-by-step explanation:

3 0
3 years ago
Given the following diagram, find the measures of ZA and ZB.
Nutka1998 [239]

Answer:

x = 14.6

ZA = 30.8

ZB = 33.2

Step-by-step explanation:

First, solve x: (knowing all angles of a triangle are 180º)

116º + (2x + 4)º + (3x-13)º = 180º

116 + 2x + 4 + 3x - 13 = 180

2x + 3x = 180 + 13 - 4 - 116

5x = 73

x = 73/5 = 14.6

ZA = 3*14.6 - 13 = 30.8

ZB = 2*14.6 + 4 =33.2

Test:

116º + 33.2º + 30.8º = 180º

3 0
3 years ago
Read 2 more answers
How do I solve P=2L+2W for L
Natasha_Volkova [10]
You need to get L by itself. Keep in mind with equality problems that what you do to one side, you must do to the other.
Let me break it down for you.
P=2L+2W, -2w from both sides.
P-2W=2L, now divide the other side by 2.
1/2P-W=L
7 0
3 years ago
Read 2 more answers
A projector displays an image on a wall. the area(in square feet) of the rectangular projection can be represented by
andrew-mc [135]

Answer:

The height of the projection will be (x - 5) feet.

Step-by-step explanation:

A projector displays an image on a wall. The area (in square feet) of the rectangular projection can be represented by (x² - 8x + 15).

Now to get the width and the height of the rectangular projection we have to factorize the expression (x² - 8x + 15).

Here, (x² - 8x + 15)

= x² - 3x - 5x + 15

= (x- 3)(x - 5)

Now, if the height of the projection is less than its width then, the height of the projection will be (x - 5) feet. (Answer)

3 0
3 years ago
kelly has $50 in her checking account. she wrote a check for $75.00 which means that she’s overdrawn by $25. if she deposits $13
Zarrin [17]

Answer:

$120.50

Step-by-step explanation:

50 - 75 = -25

135.50 - 25 = 120.50

3 0
3 years ago
Other questions:
  • (x 4 - 3x 3 + 3x 2 - 3x + 6) (x - 2)
    11·1 answer
  • Urgent help!!!<br> I'll choose brainlest!<br> Plsss
    12·2 answers
  • What is the answer to <br> -5+4=-17
    15·2 answers
  • I don't understand on how to get the answer for
    12·1 answer
  • Please help me solve
    14·1 answer
  • Circle with radius 5 inches. round your answer to the nearest tenth
    14·1 answer
  • Oscar bought 15 gallons of water at $1.98 per gallon. He wants to divide this water in bottles of 1/8 gallon each. What is the c
    12·1 answer
  • A store sells snacks by weight. A 6 ounce bag of mixed nuts costs $3.60. Will a 2 ounce bag nuts cost more than or less than $1.
    9·2 answers
  • Simply the following​
    14·1 answer
  • Which proportion could you use to convert 5 gallons to quarts?<br> Convert.<br> 5gallons=<br> quarts
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!