1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gala2k [10]
2 years ago
11

Help with num 3 please. thanks​

Mathematics
1 answer:
Alja [10]2 years ago
4 0

Answer:

a)  \displaystyle \frac{dy}{dx} \bigg| \limits_{x = 0} = -1

b)  \displaystyle \frac{dy}{dx} \bigg| \limits_{x = \frac{\pi}{2}} = -1

General Formulas and Concepts:

<u>Pre-Calculus</u>

  • Unit Circle

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹  

Derivative Rule [Product Rule]:                                                                             \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Derivative Rule [Quotient Rule]:                                                                           \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Derivative Rule [Chain Rule]:                                                                                 \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Trigonometric Differentiation

Logarithmic Differentiation

Step-by-step explanation:

a)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = ln \bigg( \frac{1 - x}{\sqrt{1 + x^2}} \bigg)

<u>Step 2: Differentiate</u>

  1. Logarithmic Differentiation [Chain Rule]:                                                     \displaystyle \frac{dy}{dx} = \frac{1}{\frac{1 - x}{\sqrt{1 + x^2}}} \cdot \frac{d}{dx}[\frac{1 - x}{\sqrt{1 + x^2}}]
  2. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \frac{d}{dx}[\frac{1 - x}{\sqrt{1 + x^2}}]
  3. Quotient Rule:                                                                                               \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \frac{(1 - x)'\sqrt{1 + x^2} - (1 - x)(\sqrt{1 + x^2})'}{(\sqrt{1 + x^2})^2}
  4. Basic Power Rule [Chain Rule]:                                                                     \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \frac{-\sqrt{1 + x^2} - (1 - x)(\frac{x}{\sqrt{x^2 + 1}})}{(\sqrt{1 + x^2})^2}
  5. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \bigg( \frac{x(x - 1)}{(x^2 + 1)^\bigg{\frac{3}{2}}} - \frac{1}{\sqrt{x^2 + 1}} \bigg)
  6. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{x + 1}{(x - 1)(x^2 + 1)}

<u>Step 3: Find</u>

  1. Substitute in <em>x</em> = 0 [Derivative]:                                                                     \displaystyle \frac{dy}{dx} \bigg| \limit_{x = 0} = \frac{0 + 1}{(0 - 1)(0^2 + 1)}
  2. Evaluate:                                                                                                         \displaystyle \frac{dy}{dx} \bigg| \limits_{x = 0} = -1

b)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = ln \bigg( \frac{1 + sinx}{1 - cosx} \bigg)

<u>Step 2: Differentiate</u>

  1. Logarithmic Differentiation [Chain Rule]:                                                     \displaystyle \frac{dy}{dx} = \frac{1}{\frac{1 + sinx}{1 - cosx}} \cdot \frac{d}{dx}[\frac{1 + sinx}{1 - cosx}]
  2. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - 1]}{sin(x) + 1} \cdot \frac{d}{dx}[\frac{1 + sinx}{1 - cosx}]
  3. Quotient Rule:                                                                                               \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - 1]}{sin(x) + 1} \cdot \frac{(1 + sinx)'(1 - cosx) - (1 + sinx)(1 - cosx)'}{(1 - cosx)^2}
  4. Trigonometric Differentiation:                                                                       \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - 1]}{sin(x) + 1} \cdot \frac{cos(x)(1 - cosx) - sin(x)(1 + sinx)}{(1 - cosx)^2}
  5. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - sin(x) - 1]}{[sin(x) + 1][cos(x) - 1]}

<u>Step 3: Find</u>

  1. Substitute in <em>x</em> = π/2 [Derivative]:                                                                 \displaystyle \frac{dy}{dx} \bigg| \limit_{x = \frac{\pi}{2}} = \frac{-[cos(\frac{\pi}{2}) - sin(\frac{\pi}{2}) - 1]}{[sin(\frac{\pi}{2}) + 1][cos(\frac{\pi}{2}) - 1]}
  2. Evaluate [Unit Circle]:                                                                                   \displaystyle \frac{dy}{dx} \bigg| \limit_{x = \frac{\pi}{2}} = -1

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

Book: College Calculus 10e

You might be interested in
What times what equals 252
Dovator [93]
There are numerous factors of 252. The factors are 1 times 252, 2 times 126, 3 times 84, 4 times 63, 6 times 42, 7 times 36, 9 times 28, 12 times 21, and 14 times 18. Hope this helped :)!
4 0
3 years ago
Read 2 more answers
The heights of some students are given 158cm 171cm 164cm 164cm 167cm 159cm what is the range of the heights?
bogdanovich [222]

Answer:

The range of students is 13.

Step-by-step explanation:

Take the largest number and subtract it from the smallest number. For example, 171 - 158 = 13 cm.

8 0
3 years ago
Which of these graphs represents a function
sdas [7]
C - no 2 points can be on the same vertical line
4 0
2 years ago
An indoor sport exhibition is coming to the arena. Your supervisor has asked you to help set up a handball pitch and seating are
Sphinxa [80]

Answer:

Perimeter: 174.8 m

Area: 1,394 sq m

Step-by-step explanation:

First, the perimeter.

Before we start, let's calculate the circumference of the half-circles at the ends of the field.

The measurement says 2,000 cm, so let's convert it to 20 m for ease.

Circumference of a circle: πd, where d = diameter.. in our case d = 20 m

Circumference of a 20m diameter circle: 20π = 62.8 m

We have 2 half circles... so the perimeter of each half-circle will be: 31.4 m

We also have 800 cm measurement for the "height" of the seating areas... let's convert that in 8 m

We also need to find out the space between the seating area...  We know the whole rectangular pitch is 40 m, then we have to subtract the width of both seating areas (20 and 15 m)... so the space between them is 5m

So, starting with the upper left corner of the rectangular pitch, and working our way clockwise, we encounter the following lengths:

P = 40 + 31.4 + 8 + 10 + 8 + 5 + 8 + 25 + 8 + 31.4 = 174.8 m

The total perimeter is then of 174.8 m

For the area, we need to calculate the area of all forms:

Large rectangular pitch:

LR = 40 x 20 = 800 sq m

The two half circles, form a circle, so A = πr², where r is the radius, which is half the diameter.

AC = π (10)² = 100 π = 314 sq m

Then the seating areas:

SA1 = 25 x 8 = 200 sq m

SA2 = 10 x 8 - 80 sq m

Then, we add up everything:

TA = LR + AC + SA1 + SA2

TA = 800 + 314 + 200 + 80 = 1,394 sq m

3 0
3 years ago
HELP MWNOWWWWWWWW PLSSSSSSSSSSSSSSSSSSS
ICE Princess25 [194]
The answer is $128.40
4 0
3 years ago
Read 2 more answers
Other questions:
  • In parallelogram ABCD, the measure of angle ABC is 3 times the measure of angle BCD. How many degrees are in the measure of angl
    14·1 answer
  • What is scientific notation?
    6·2 answers
  • Translate the verbal phrase into an algebraic expression. The sum of 3 and 5y multiplied by 17.
    8·1 answer
  • Which shaded region is the solution to this system of inequalities?
    15·2 answers
  • What property is this?
    11·1 answer
  • At the local gas station gasoline costs $2.75 for per gallon and diesel costs $3.02 per gallon. Gabriel needs to purchase 15.2 g
    7·1 answer
  • What is the setting for little red wagon movie
    9·1 answer
  • 9.<br> What is the range of the function<br> f(x) = 3.3?
    14·1 answer
  • Rearrange the area formula to solve for |<br> A=lw
    12·1 answer
  • A face of a solid is
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!