1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gala2k [10]
2 years ago
11

Help with num 3 please. thanks​

Mathematics
1 answer:
Alja [10]2 years ago
4 0

Answer:

a)  \displaystyle \frac{dy}{dx} \bigg| \limits_{x = 0} = -1

b)  \displaystyle \frac{dy}{dx} \bigg| \limits_{x = \frac{\pi}{2}} = -1

General Formulas and Concepts:

<u>Pre-Calculus</u>

  • Unit Circle

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹  

Derivative Rule [Product Rule]:                                                                             \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Derivative Rule [Quotient Rule]:                                                                           \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Derivative Rule [Chain Rule]:                                                                                 \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Trigonometric Differentiation

Logarithmic Differentiation

Step-by-step explanation:

a)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = ln \bigg( \frac{1 - x}{\sqrt{1 + x^2}} \bigg)

<u>Step 2: Differentiate</u>

  1. Logarithmic Differentiation [Chain Rule]:                                                     \displaystyle \frac{dy}{dx} = \frac{1}{\frac{1 - x}{\sqrt{1 + x^2}}} \cdot \frac{d}{dx}[\frac{1 - x}{\sqrt{1 + x^2}}]
  2. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \frac{d}{dx}[\frac{1 - x}{\sqrt{1 + x^2}}]
  3. Quotient Rule:                                                                                               \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \frac{(1 - x)'\sqrt{1 + x^2} - (1 - x)(\sqrt{1 + x^2})'}{(\sqrt{1 + x^2})^2}
  4. Basic Power Rule [Chain Rule]:                                                                     \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \frac{-\sqrt{1 + x^2} - (1 - x)(\frac{x}{\sqrt{x^2 + 1}})}{(\sqrt{1 + x^2})^2}
  5. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \bigg( \frac{x(x - 1)}{(x^2 + 1)^\bigg{\frac{3}{2}}} - \frac{1}{\sqrt{x^2 + 1}} \bigg)
  6. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{x + 1}{(x - 1)(x^2 + 1)}

<u>Step 3: Find</u>

  1. Substitute in <em>x</em> = 0 [Derivative]:                                                                     \displaystyle \frac{dy}{dx} \bigg| \limit_{x = 0} = \frac{0 + 1}{(0 - 1)(0^2 + 1)}
  2. Evaluate:                                                                                                         \displaystyle \frac{dy}{dx} \bigg| \limits_{x = 0} = -1

b)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = ln \bigg( \frac{1 + sinx}{1 - cosx} \bigg)

<u>Step 2: Differentiate</u>

  1. Logarithmic Differentiation [Chain Rule]:                                                     \displaystyle \frac{dy}{dx} = \frac{1}{\frac{1 + sinx}{1 - cosx}} \cdot \frac{d}{dx}[\frac{1 + sinx}{1 - cosx}]
  2. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - 1]}{sin(x) + 1} \cdot \frac{d}{dx}[\frac{1 + sinx}{1 - cosx}]
  3. Quotient Rule:                                                                                               \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - 1]}{sin(x) + 1} \cdot \frac{(1 + sinx)'(1 - cosx) - (1 + sinx)(1 - cosx)'}{(1 - cosx)^2}
  4. Trigonometric Differentiation:                                                                       \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - 1]}{sin(x) + 1} \cdot \frac{cos(x)(1 - cosx) - sin(x)(1 + sinx)}{(1 - cosx)^2}
  5. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - sin(x) - 1]}{[sin(x) + 1][cos(x) - 1]}

<u>Step 3: Find</u>

  1. Substitute in <em>x</em> = π/2 [Derivative]:                                                                 \displaystyle \frac{dy}{dx} \bigg| \limit_{x = \frac{\pi}{2}} = \frac{-[cos(\frac{\pi}{2}) - sin(\frac{\pi}{2}) - 1]}{[sin(\frac{\pi}{2}) + 1][cos(\frac{\pi}{2}) - 1]}
  2. Evaluate [Unit Circle]:                                                                                   \displaystyle \frac{dy}{dx} \bigg| \limit_{x = \frac{\pi}{2}} = -1

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

Book: College Calculus 10e

You might be interested in
Someone help me ASAP!!!! I need this ASAP!!!!
qwelly [4]
So to solve it the equation is a squared plus b squared = c squared. So you square a and b. Then do the square root of that and should get c. C is always the largest side. C is opposite from a 90 degree angle . Hope this helps you answer your question.
5 0
3 years ago
Russell randomly surveys seventh-graders in his school and finds that 6 of 30 attend summer camp. If there are 200 seventh-grade
Lady_Fox [76]

Answer:

40

Step-by-step explanation:

6 of 30 is the ratio 6 to 30 or 6/30.

6/30 reduces to 1/5

The survey shows that 1/5 of the students attend summer camp.

1/5 of 200 = 1/5 * 200 = 40

3 0
3 years ago
(3,-4, slope = undefined
Anni [7]



lines with undefined slope are vertical

equation are  in form of x constant

through the points ( 3 , -4)

the line is x=3


4 0
3 years ago
350% of 32<br> 15 points I will give
Agata [3.3K]

32 \times 350 \div 100 = 112
8 0
3 years ago
Helpppp plsss I’m trying to get my grade up
makvit [3.9K]
<h3>Answer:   1.75 square feet</h3>

This converts to the improper fraction 7/4

======================================================

Work Shown:

3/4 = 0.75

area of triangle on the left = base*height/2 = 0.75*2/2 = 0.75 sq ft

area of triangle on the right = base*height/2 = 1*2/2 = 1 sq ft

total area = 0.75+1 = 1.75 sq ft

This converts to the improper fraction 7/4 because

1.75 = 1 + 0.75

1.75 = 1 + 3/4

1.75 = 4/4 + 3/4

1.75 = (4+3)/4

1.75 = 7/4

8 0
3 years ago
Other questions:
  • A grocery store sells a bag of 5 lemons for $2.00. What is the unit cost of each lemon in the bag?
    8·2 answers
  • 7. If a 12 pack of soda cost Mr. Key $3.84, what would the unit price be for
    5·1 answer
  • assume that when adults with smartphones are randomly selected, 45% use them in meetings or classes. If 6 adult smartphone users
    12·1 answer
  • Math Help Please??? Don't Answer If Unsure Please?
    5·1 answer
  • How do I figure out the third measure of a triangle
    11·1 answer
  • I need help on this question
    12·1 answer
  • The sum of 3 integers is 194. the sum of the first and second integers exceeds the third by 80. The third integer is 45 less tha
    11·1 answer
  • Which function has a graph with
    6·1 answer
  • on the first play of a game , a football team gained 23 yards and then lost 10 yards due to penalty during the second play the t
    9·1 answer
  • Choose the end behavior of the graph of each polynomial function
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!