1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gala2k [10]
2 years ago
11

Help with num 3 please. thanks​

Mathematics
1 answer:
Alja [10]2 years ago
4 0

Answer:

a)  \displaystyle \frac{dy}{dx} \bigg| \limits_{x = 0} = -1

b)  \displaystyle \frac{dy}{dx} \bigg| \limits_{x = \frac{\pi}{2}} = -1

General Formulas and Concepts:

<u>Pre-Calculus</u>

  • Unit Circle

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹  

Derivative Rule [Product Rule]:                                                                             \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Derivative Rule [Quotient Rule]:                                                                           \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Derivative Rule [Chain Rule]:                                                                                 \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Trigonometric Differentiation

Logarithmic Differentiation

Step-by-step explanation:

a)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = ln \bigg( \frac{1 - x}{\sqrt{1 + x^2}} \bigg)

<u>Step 2: Differentiate</u>

  1. Logarithmic Differentiation [Chain Rule]:                                                     \displaystyle \frac{dy}{dx} = \frac{1}{\frac{1 - x}{\sqrt{1 + x^2}}} \cdot \frac{d}{dx}[\frac{1 - x}{\sqrt{1 + x^2}}]
  2. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \frac{d}{dx}[\frac{1 - x}{\sqrt{1 + x^2}}]
  3. Quotient Rule:                                                                                               \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \frac{(1 - x)'\sqrt{1 + x^2} - (1 - x)(\sqrt{1 + x^2})'}{(\sqrt{1 + x^2})^2}
  4. Basic Power Rule [Chain Rule]:                                                                     \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \frac{-\sqrt{1 + x^2} - (1 - x)(\frac{x}{\sqrt{x^2 + 1}})}{(\sqrt{1 + x^2})^2}
  5. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \bigg( \frac{x(x - 1)}{(x^2 + 1)^\bigg{\frac{3}{2}}} - \frac{1}{\sqrt{x^2 + 1}} \bigg)
  6. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{x + 1}{(x - 1)(x^2 + 1)}

<u>Step 3: Find</u>

  1. Substitute in <em>x</em> = 0 [Derivative]:                                                                     \displaystyle \frac{dy}{dx} \bigg| \limit_{x = 0} = \frac{0 + 1}{(0 - 1)(0^2 + 1)}
  2. Evaluate:                                                                                                         \displaystyle \frac{dy}{dx} \bigg| \limits_{x = 0} = -1

b)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = ln \bigg( \frac{1 + sinx}{1 - cosx} \bigg)

<u>Step 2: Differentiate</u>

  1. Logarithmic Differentiation [Chain Rule]:                                                     \displaystyle \frac{dy}{dx} = \frac{1}{\frac{1 + sinx}{1 - cosx}} \cdot \frac{d}{dx}[\frac{1 + sinx}{1 - cosx}]
  2. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - 1]}{sin(x) + 1} \cdot \frac{d}{dx}[\frac{1 + sinx}{1 - cosx}]
  3. Quotient Rule:                                                                                               \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - 1]}{sin(x) + 1} \cdot \frac{(1 + sinx)'(1 - cosx) - (1 + sinx)(1 - cosx)'}{(1 - cosx)^2}
  4. Trigonometric Differentiation:                                                                       \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - 1]}{sin(x) + 1} \cdot \frac{cos(x)(1 - cosx) - sin(x)(1 + sinx)}{(1 - cosx)^2}
  5. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - sin(x) - 1]}{[sin(x) + 1][cos(x) - 1]}

<u>Step 3: Find</u>

  1. Substitute in <em>x</em> = π/2 [Derivative]:                                                                 \displaystyle \frac{dy}{dx} \bigg| \limit_{x = \frac{\pi}{2}} = \frac{-[cos(\frac{\pi}{2}) - sin(\frac{\pi}{2}) - 1]}{[sin(\frac{\pi}{2}) + 1][cos(\frac{\pi}{2}) - 1]}
  2. Evaluate [Unit Circle]:                                                                                   \displaystyle \frac{dy}{dx} \bigg| \limit_{x = \frac{\pi}{2}} = -1

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

Book: College Calculus 10e

You might be interested in
Simplify <img src="https://tex.z-dn.net/?f=%5Cfrac%7B8%28x%2B3%29%5E%7B2%7D%7D%7B2%28x%2B3%29%7D" id="TexFormula1" title="\frac{
zaharov [31]
The answer simplified is -148
4 0
3 years ago
if the ratio of home fans to visiting fans is 5:2 and all 42000 seats in a stadium are filled, how many visiting fans are in att
jeka94

Answer:

12000

Step-by-step explanation:

Sum the parts of the ratio, 5 + 2 = 7

Divide the total seats by 7 to find the value of one part of the ratio

42000 ÷  7 = 6000 ← value of 1 part of the ratio

visiting fans = 2 × 6000 = 12000

8 0
3 years ago
11/12 divided by 4 as a fraction
otez555 [7]

Answer: 11/48

Step-by-step explanation:

(11/12) / 4 = 11/12 * 1/4 = (11*1)/(12*4) = 11/48

4 0
2 years ago
Read 2 more answers
X+5/5=x+9/7 x equals?
satela [25.4K]
X+5/5=X+9/7
-X. -X
5/5=9/7
there is no solution
8 0
3 years ago
Read 2 more answers
16. A large-sample 95 percent confidence interval for the proportion of credit
borishaifa [10]

Answer:

(B) 0.057

Step-by-step explanation:

The 95% confidence interval is (0.028, 0.086). The formula for the confidence interval is μ ± e where μ is the mean and e is the margin of error.

Therefore the confidence interval is (μ - e , μ + e).

That is μ - e = 0.028 and μ + e = 0.086

To get the point estimate which is the mean, we sum the two proportions and divide it by two.

Therefore point estimate (μ) = (0.028 + 0.086) / 2 = 0.057

3 0
3 years ago
Other questions:
  • which of the following statements must be true about an equation before you can use the quadratic formula to find the solutionsl
    9·1 answer
  • Simplify the expression.<br><br>(1 − 6i) + (5 + i)<br><br>​
    9·2 answers
  • The indicated function y1(x) is a solution of the given differential equation. Use reduction of order or formula (5) in Section
    6·1 answer
  • There are 2 black balls, one red ball and one green ball, identical in shape and size. How many different linear arrangements ca
    15·1 answer
  • Sarabeth ran 1 2/5 miles on a path around the park. This was 5/8 of the distance around the park. What is the distance around th
    7·1 answer
  • As part of a school contest, Sarah and Luis are playing a math game. Sarah must pick a number between 1 and 50 and give Luis clu
    5·2 answers
  • Pay $0.24 for each banana OR pay $1.99 per pound of bananas ​
    9·2 answers
  • What is the range of the function, f(x)?
    12·1 answer
  • (12.0) and (0.35)<br> What’s the answer
    14·1 answer
  • Help this is due today-
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!