1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gala2k [10]
3 years ago
11

Help with num 3 please. thanks​

Mathematics
1 answer:
Alja [10]3 years ago
4 0

Answer:

a)  \displaystyle \frac{dy}{dx} \bigg| \limits_{x = 0} = -1

b)  \displaystyle \frac{dy}{dx} \bigg| \limits_{x = \frac{\pi}{2}} = -1

General Formulas and Concepts:

<u>Pre-Calculus</u>

  • Unit Circle

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹  

Derivative Rule [Product Rule]:                                                                             \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Derivative Rule [Quotient Rule]:                                                                           \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Derivative Rule [Chain Rule]:                                                                                 \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Trigonometric Differentiation

Logarithmic Differentiation

Step-by-step explanation:

a)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = ln \bigg( \frac{1 - x}{\sqrt{1 + x^2}} \bigg)

<u>Step 2: Differentiate</u>

  1. Logarithmic Differentiation [Chain Rule]:                                                     \displaystyle \frac{dy}{dx} = \frac{1}{\frac{1 - x}{\sqrt{1 + x^2}}} \cdot \frac{d}{dx}[\frac{1 - x}{\sqrt{1 + x^2}}]
  2. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \frac{d}{dx}[\frac{1 - x}{\sqrt{1 + x^2}}]
  3. Quotient Rule:                                                                                               \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \frac{(1 - x)'\sqrt{1 + x^2} - (1 - x)(\sqrt{1 + x^2})'}{(\sqrt{1 + x^2})^2}
  4. Basic Power Rule [Chain Rule]:                                                                     \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \frac{-\sqrt{1 + x^2} - (1 - x)(\frac{x}{\sqrt{x^2 + 1}})}{(\sqrt{1 + x^2})^2}
  5. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \bigg( \frac{x(x - 1)}{(x^2 + 1)^\bigg{\frac{3}{2}}} - \frac{1}{\sqrt{x^2 + 1}} \bigg)
  6. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{x + 1}{(x - 1)(x^2 + 1)}

<u>Step 3: Find</u>

  1. Substitute in <em>x</em> = 0 [Derivative]:                                                                     \displaystyle \frac{dy}{dx} \bigg| \limit_{x = 0} = \frac{0 + 1}{(0 - 1)(0^2 + 1)}
  2. Evaluate:                                                                                                         \displaystyle \frac{dy}{dx} \bigg| \limits_{x = 0} = -1

b)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = ln \bigg( \frac{1 + sinx}{1 - cosx} \bigg)

<u>Step 2: Differentiate</u>

  1. Logarithmic Differentiation [Chain Rule]:                                                     \displaystyle \frac{dy}{dx} = \frac{1}{\frac{1 + sinx}{1 - cosx}} \cdot \frac{d}{dx}[\frac{1 + sinx}{1 - cosx}]
  2. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - 1]}{sin(x) + 1} \cdot \frac{d}{dx}[\frac{1 + sinx}{1 - cosx}]
  3. Quotient Rule:                                                                                               \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - 1]}{sin(x) + 1} \cdot \frac{(1 + sinx)'(1 - cosx) - (1 + sinx)(1 - cosx)'}{(1 - cosx)^2}
  4. Trigonometric Differentiation:                                                                       \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - 1]}{sin(x) + 1} \cdot \frac{cos(x)(1 - cosx) - sin(x)(1 + sinx)}{(1 - cosx)^2}
  5. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - sin(x) - 1]}{[sin(x) + 1][cos(x) - 1]}

<u>Step 3: Find</u>

  1. Substitute in <em>x</em> = π/2 [Derivative]:                                                                 \displaystyle \frac{dy}{dx} \bigg| \limit_{x = \frac{\pi}{2}} = \frac{-[cos(\frac{\pi}{2}) - sin(\frac{\pi}{2}) - 1]}{[sin(\frac{\pi}{2}) + 1][cos(\frac{\pi}{2}) - 1]}
  2. Evaluate [Unit Circle]:                                                                                   \displaystyle \frac{dy}{dx} \bigg| \limit_{x = \frac{\pi}{2}} = -1

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

Book: College Calculus 10e

You might be interested in
|-3| ≤ 0 True or False
MA_775_DIABLO [31]

Answer:

False

Step-by-step explanation:

It is false because the absolute value signs mean that |-3| is actually positive 3. Absolute values are always positive. So, now you have 3 is less than or equal to 0, which is false because 3 is greater than 0.

3 0
3 years ago
Read 2 more answers
38 Points AND BRAINLIST PRIZE
miss Akunina [59]

The boundary for the first inequality: y> x+3 is the line y=x+3 and will be excluded (dashed) from the highlighted area because of the absence of equality sign.

The boundary for the second inequality: y <= 3x-3 is the line y=3x-3, and will show in solid because of the presence of the equal sign.

Please see the image attached showing your original graph with the first inequality in blue, the second in red. Note the y intercepts highlighted by a dot, and also verify the slopes: 1 and 3, respectively.

The solution to the system if inequalities is the area with both shadings overlapping.

Let me know if you have questions.

7 0
3 years ago
Read 2 more answers
The answer and to understand
antoniya [11.8K]
Market 1: 3,90/10 = 0.390 $
market 2: 4,44/12= 0,37 $
best price in market 2
4 0
3 years ago
Read 2 more answers
suppose the sales tax rate in your area is 7.5%. explain how to determine the total cost, including tax, of an eReader that cost
BartSMP [9]
To find the tax you first move the decimal place 2 places to the left giving you the exact percent in decimal form. .075 is the correct decimal for this percent. You then multiply that percent by the cost of the product. (125) After multiplying you get the product $9.375. Then you round to the nearest tens place giving you $9.38
7 0
3 years ago
In a video game, the chance of rain each day is always 30%. At the beginning of each day in the video game, the computer generat
ss7ja [257]

Answer:

35

Step-by-step explanation:

5 0
3 years ago
Other questions:
  • What is the value of the rational expression x+4 over 10-x when x=5
    12·1 answer
  • What is the best first step for solving the given system using substitution while avoiding fractions -9x+4y=10 -9x+3y=3
    13·2 answers
  • Graph a line with a slope of -3/4<br> that contains the point (2,3) ?
    14·1 answer
  • There are 13 books on a shelf. 4 of these books are new.
    12·2 answers
  • 30mL:45mL simplify the ratio
    11·1 answer
  • 8725+w=10619<br> if u have a answer pleas tell me
    10·1 answer
  • I need help.......I will make u brainlest some thing like that
    13·2 answers
  • Please help will give branlist
    13·1 answer
  • If f(x)=2x - 7 and g(x)=x^2-1, find f(g(-2)) =
    9·1 answer
  • How many calories does Jennifer and Brian have left for dinner if each student followed the diet below
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!