First we need to find where the 2 graphs intercept.
x^2 + 3 = - (x^2 - 4x + 4) + 7
x^2 + 3 = -x^2 + 4x + 3
2x^2 - 4x = 0
2x(x - 2)
x = 0 , 2. are x coordinates of the 2 intercepts.
Answer: 2.4 + 7.6 = 10
Step-by-step explanation:
Hope this helps
<span>Shaded region is when x is negative</span>
Answer:
The answer to your question is: 16x + 3
Step-by-step explanation:
Step 1 : f(x) = 8x² + 3x
f(x +h) = 8(x + h)² + 3( x + h)
f(x + h) = 8( x² + 2xh + h²) + 3( x + h)
f (x + h) = 8x² + 16xh + 8h² + 3x + 3h
Step 2 f(x+h) - f(x) = 8x² + 16xh + 8h² + 3x + 3h - ( 8x² + 3x)
= 8x² + 16xh + 8h² + 3x + 3h - 8x² -3x
= 16xh + 8h² + 3 h
Step 3 f(x + h) - f(x)/ h = h(16x + 8h + 3) /h
= 16x + 8h + 3
Step 4 lim f(x + h) - f(x)/ h = lim 16x + 8h + 3 = lim 16x + 8(0) + 3 = 16x + 3
h ⇒0 h ⇒0 h ⇒0
Answer:
$1.20 Increase
Step-by-step explanation:
18.60/15.5