Answer:
a=223.57
c=181.43
Step-by-step explanation:
a=405-c
substitute for a in the equation :
12a+5c=3590
12(405-c)+5c=3590
4860-12c+5c=3590
-7c=3590-4860
-7c=-1270
c=1270/7=181.43
a=405-1270/7
a=1565/7=223.57
Answer:
40 percent
Step-by-step explanation:
All you have to do is divide the numerator by the denominator and then multiply that result with 100
Answer:
Area of segment = 9.8 cm² (Approx.)
Step-by-step explanation:
Given:
Angle θ = 120°
Radius of circle = 4 cm
Find:
Area of segment
Computation:
Area of segment = [θ/360][π][r]² - [1/2][r²][sinθ]
Area of segment = [120/360][3.14][4]² - [1/2][4²][sin120]
Area of segment = [0.333][3.14][16] - [0.5][16][0.866]
Area of segment = 16.7299 - 6.28
Area of segment = 9.8019
Area of segment = 9.8 cm² (Approx.)
Answer: The side A measures 12 centimetres
Step-by-step explanation: Please refer to the attached picture for details.
The trapezoid is given with dimensions as shown, that is 3 cm, 5 cm, 2 cm and 2 cm. Furthermore, it is now enlarged into another trapezoid with the dimensions given as 20 cm, 8 cm, 8 cm and A cm.
Having been told that the second parallelogram is an expansion of the first one tells us that they are similar trapezoids. Hence, the ratio that makes them similar is derived as follows;
Ratio = 2:8 = 2:8 = 5:20
Ratio = 1:4 = 1:4 = 1:4
Therefore, having determined the ratio by which the trapezoid is enlarged, side A is calculated as follows;
1/4 = 3/A
A = 4 x 3
A = 12 centimetres