Answer: 66.6 oercent
Step-by-step explanation: Hope this helps
Answer:
Ok so here are the simple rules of doing it (very easy) cause I’m not doing it all so . when multiplying a power with The same base keep the base but add the exponents. Dividing, keep the base (if their the same if not then its already simplified same with multiplication) but SUBTRACT the exponents. Also keep the parenthesis if it’s a negative number base.
I’ll do a few.
11) a^10. 11b) 5^4
12) (-2)^2.
13) 10^2. 13b) s^6
14) -4s^5(t^6) <- [Im not sure of this one)
15) x^3(y^3)
Answer:
hold on its its.............oh yeah 21
Given,
3/3x + 1/(x + 4) = 10/7x
1/x + 1/(x+4) = 10/7x
Because the first term on LHS has 'x' in the denominator and the second term in the LHS has '(x + 4)' in the denominator. So to get a common denominator, multiply and divide the first term with '(x + 4)' and the second term with 'x' as shown below
{(1/x)(x + 4)/(x + 4)} + {(1/(x + 4))(x/x)} = 10/7x
{(1(x + 4))/(x(x + 4))} + {(1x)/(x(x + 4))} = 10/7x
Now the common denominator for both terms is (x(x + 4)); so combining the numerators, we get,
{1(x + 4) + 1x} / {x(x + 4)} = 10/7x
(x + 4 + 1x) / (x(x + 4)) = 10/7x
(2x + 4) / (x(x + 4)) = 10/7x
In order to have the same denominator for both LHS and RHS, multiply and divide the LHS by '7' and the RHS by '(x + 4)'
{(2x+4) / (x(x + 4))} (7 / 7) = (10 / 7x) {(x + 4) / (x + 4)}
(14x + 28) / (7x(x + 4)) = (10x + 40) / (7x(x + 4))
Now both LHS and RHS have the same denominator. These can be cancelled.
∴14x + 28 = 10x + 40
14x - 10x = 40 - 28
4x = 12
x = 12/4
∴x = 3
Answer:
not d
Step-by-step explanation:
because hight for all of the other shapes is up and down , not horizontal