Answer:
![3(3x-1)(7x +2)](https://tex.z-dn.net/?f=3%283x-1%29%287x%20%2B2%29)
Step-by-step explanation:
![63x^2-3x-6](https://tex.z-dn.net/?f=63x%5E2-3x-6)
Suppose a generic quadratic equation
![ax^2 + bx + c](https://tex.z-dn.net/?f=ax%5E2%20%2B%20bx%20%2B%20c)
To factor this equation, I need to find its roots. Then we use the quadratic formula of:
![\frac{-b + \sqrt{b^2-4ac}}{2a}](https://tex.z-dn.net/?f=%5Cfrac%7B-b%20%2B%20%5Csqrt%7Bb%5E2-4ac%7D%7D%7B2a%7D)
and
![\frac{-b + \sqrt{b^2-4ac}}{2a}](https://tex.z-dn.net/?f=%5Cfrac%7B-b%20%2B%20%5Csqrt%7Bb%5E2-4ac%7D%7D%7B2a%7D)
So, for the equation 63x ^ 2-3x-6 we have:
![\frac{3 + \sqrt{(-3)^2-4(63)(-6)}}{2(63)} = \frac{1}{3}](https://tex.z-dn.net/?f=%5Cfrac%7B3%20%2B%20%5Csqrt%7B%28-3%29%5E2-4%2863%29%28-6%29%7D%7D%7B2%2863%29%7D%20%3D%20%5Cfrac%7B1%7D%7B3%7D)
and
![\frac{3 - \sqrt{(-3)^2-4(63)(-6)}}{2(63)} = \frac{-2}{7}](https://tex.z-dn.net/?f=%5Cfrac%7B3%20-%20%5Csqrt%7B%28-3%29%5E2-4%2863%29%28-6%29%7D%7D%7B2%2863%29%7D%20%3D%20%5Cfrac%7B-2%7D%7B7%7D)
So:
![(x-\frac{1}{3}) = 0\\\\(3x-1) = 0](https://tex.z-dn.net/?f=%28x-%5Cfrac%7B1%7D%7B3%7D%29%20%3D%200%5C%5C%5C%5C%283x-1%29%20%3D%200)
and
![(x - (-\frac{2}{7})) = 0\\\\(x+ \frac{2}{7}) = 0\\\\(7x +2) = 0](https://tex.z-dn.net/?f=%28x%20-%20%28-%5Cfrac%7B2%7D%7B7%7D%29%29%20%3D%200%5C%5C%5C%5C%28x%2B%20%5Cfrac%7B2%7D%7B7%7D%29%20%3D%200%5C%5C%5C%5C%287x%20%2B2%29%20%3D%200)
Finally the polynomial is:
![(3x-1)(7x +2)](https://tex.z-dn.net/?f=%283x-1%29%287x%20%2B2%29)
24ft long, 12ft wide
2/.25=8 8x3=24
1/.25=4 4x3=12
Answer: m<VUT= 70 degrees
Step-by-step explanation:
120= 50+ ?
?=70
Answer:
chint chong your opinion is wrong 69
Step-by-step explanation:
69 420 give brainliest
Answer:
Answer is given below.
Step-by-step explanation:
3. Option a is correct
we ran a univariate ANOVA for 2 independent variables and 1 dependent variable.
for the bragger condition (truthful or non truthful), we got the F (1,116)=68.646 and p value = 0.000 < 0.01 that necessarily implies that there is no significant main effect of the bragger condition on the likeability of Edward.