For the given equation;

We shall begin by expanding the parenthesis on the left side, after which we would combine all terms on and move all of them to the left side, which shall yield a quadratic equation. Then we shall solve.
Let us begin by expanding the parenthesis;

Now that we have expanded the left side of the equation, we would have;

We shall now solve the resulting quadratic equation using the quadratic formula as follows;
![\begin{gathered} x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ \text{Where;} \\ a=9,b=-30,c=150 \\ x=\frac{-(-30)\pm\sqrt[]{(-30)^2-4(9)(150)}}{2(9)} \\ x=\frac{30\pm\sqrt[]{900-5400}}{18} \\ x=\frac{30\pm\sqrt[]{-4500}}{18} \\ x=\frac{30\pm\sqrt[]{-900\times5}}{18} \\ x=\frac{30\pm\sqrt[]{-900}\times\sqrt[]{5}}{18} \\ x=\frac{30\pm30i\sqrt[]{5}}{18} \\ \text{Therefore;} \\ x=\frac{30+30i\sqrt[]{5}}{18},x=\frac{30-30i\sqrt[]{5}}{18} \\ \text{Divide all through by 6, and we'll have;} \\ x=\frac{5+5i\sqrt[]{5}}{3},x=\frac{5-5i\sqrt[]{5}}{3} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20x%3D%5Cfrac%7B-b%5Cpm%5Csqrt%5B%5D%7Bb%5E2-4ac%7D%7D%7B2a%7D%20%5C%5C%20%5Ctext%7BWhere%3B%7D%20%5C%5C%20a%3D9%2Cb%3D-30%2Cc%3D150%20%5C%5C%20x%3D%5Cfrac%7B-%28-30%29%5Cpm%5Csqrt%5B%5D%7B%28-30%29%5E2-4%289%29%28150%29%7D%7D%7B2%289%29%7D%20%5C%5C%20x%3D%5Cfrac%7B30%5Cpm%5Csqrt%5B%5D%7B900-5400%7D%7D%7B18%7D%20%5C%5C%20x%3D%5Cfrac%7B30%5Cpm%5Csqrt%5B%5D%7B-4500%7D%7D%7B18%7D%20%5C%5C%20x%3D%5Cfrac%7B30%5Cpm%5Csqrt%5B%5D%7B-900%5Ctimes5%7D%7D%7B18%7D%20%5C%5C%20x%3D%5Cfrac%7B30%5Cpm%5Csqrt%5B%5D%7B-900%7D%5Ctimes%5Csqrt%5B%5D%7B5%7D%7D%7B18%7D%20%5C%5C%20x%3D%5Cfrac%7B30%5Cpm30i%5Csqrt%5B%5D%7B5%7D%7D%7B18%7D%20%5C%5C%20%5Ctext%7BTherefore%3B%7D%20%5C%5C%20x%3D%5Cfrac%7B30%2B30i%5Csqrt%5B%5D%7B5%7D%7D%7B18%7D%2Cx%3D%5Cfrac%7B30-30i%5Csqrt%5B%5D%7B5%7D%7D%7B18%7D%20%5C%5C%20%5Ctext%7BDivide%20all%20through%20by%206%2C%20and%20we%27ll%20have%3B%7D%20%5C%5C%20x%3D%5Cfrac%7B5%2B5i%5Csqrt%5B%5D%7B5%7D%7D%7B3%7D%2Cx%3D%5Cfrac%7B5-5i%5Csqrt%5B%5D%7B5%7D%7D%7B3%7D%20%5Cend%7Bgathered%7D)
ANSWER:
Answer:
1.28 or 912/715
Step-by-step explanation:
sine= opposite side/hypotenuse
cos=adjacent/ hypotenuse
sine a= 12/13 using the Pythagorean Theorem and solve for the missing side. (which is the adjacent side)
cos a = 5/13
Do the same for sine b
cos b= 9.8/11
add both the cosine value
(5/13)+(9.8/11)=1.28 or 912/715 in fraction form
Try 9cm but I’m not quite sure please reply if it’s wrong or right
Answer:
$128
Step-by-step explanation:
your looking for 16/8, divide 16 by 3, leaving you with 5.333...
now times that by $24, and you have your answer hope this helps
sqrt (5x - 9) - 1 = x
sqrt(5x - 9) = x + 1
Square both sides:_
5x - 9 = x^2 + 2x + 1
x^2 - 3x + 10 = 0
(x - 5)(x + 2) = 0
x = 5 or -2.
Lets look for for any extraneous solutions:-
x = 5 ; sqrt (5*5-9) - 1 = sqrt16 - 1 = 3 and x = 3 (right hand side of equation)
so x = 5 is a solution
x = -2: sqrt(5*-2 - 9) - 1 = sqrt (-19) - 1 and x = -2 so this is extraneous
Answer:- One solution x = 5