F = t ⇨ df = dt
dg = sec² 2t dt ⇨ g = (1/2) tan 2t
⇔
integral of t sec² 2t dt = (1/2) t tan 2t - (1/2) integral of tan 2t dt
u = 2t ⇨ du = 2 dt
As integral of tan u = - ln (cos (u)), you get :
integral of t sec² 2t dt = (1/4) ln (cos (u)) + (1/2) t tan 2t + constant
integral of t sec² 2t dt = (1/2) t tan 2t + (1/4) ln (cos (2t)) + constant
integral of t sec² 2t dt = (1/4) (2t tan 2t + ln (cos (2t))) + constant ⇦ answer
The age of the person is 36 :) hoped this helped
Answer:
The base is 19.5.
Step-by-step explanation:
The given question is, "The perimeter of a rectangle is 58 and its base exceeds its width by 10, how long is the base?"
Perimeter = 58
Base, l = 10+b
The perimeter of a rectangle is :
P = 2(l+b)
58 = 2(10+b+b)
29 = (10+2b)
29-10 = 2b
19 = 2b
b = 9.5
Base, l = 10 + 9.5
= 19.5
Hence, the base is 19.5.
Answer:
the answer is 9 :)
Step-by-step explanation:
Answer:
15/61+18/61i
Step-by-step explanation: