Answer:
yeah so you just do that
Step-by-step explanation:
Answer:
618000
Step-by-step explanation:
just add
By geometric and algebraic properties the angles BTC, TBC and TBC from the triangle BTC are 128°, 26° and 26°, respectively.
<h3>How to determine the angles of a triangle inscribed in a circle</h3>
According to the figure, the triangle BTC is inscribed in the circle by two points (B, C). In this question we must make use of concepts of diameter and triangles to determine all missing angles.
Since AT and BT represent the radii of the circle, then the triangle ABT is an <em>isosceles</em> triangle. By geometry we know that the sum of <em>internal</em> angles of a triangle equals 180°. Hence, the measure of the angles A and B is 64°.
The angles ATB and BTC are <em>supplmentary</em> and therefore the measure of the latter is 128°. The triangle BTC is also an <em>isosceles</em> triangle and the measure of angles TBC and TCB is 26°.
By geometric and algebraic properties the angles BTC, TBC and TBC from the triangle BTC are 128°, 26° and 26°, respectively.
To learn more on triangles, we kindly invite to check this verified question: brainly.com/question/2773823
Equations and Inequalities - Multiplication equations - First Glance. To solve a multiplication equation, use the inverse operation of division. Divide both sides by the same non-zero number. Click the equation to see how to solve it.
One solution- if the graphs of the equations intersect, then there is one solution that is true for both solutions.
No solutions- If the graphs of the equation do not intersect (example-if they are parallel) there are no solutions that there are true for both equations.
<span />