Height of the woman = 5 ft
Rate at which the woman is walking = 7.5 ft/sec
Let us assume the length of the shadow = s
Le us assume the <span>distance of the woman's feet from the base of the streetlight = x
</span>Then
s/5 = (s + x)/12
12s = 5s + 5x
7s = 5x
s = (5/7)x
Now let us differentiate with respect to t
ds/dt = (5/7)(dx/dt)
We already know that dx/dt = 7/2 ft/sec
Then
ds/dt = (5/7) * (7/2)
        = (5/2)
        = 2.5 ft/sec
From the above deduction, it can be easily concluded that the rate at which the tip of her shadow is moving is 2.5 ft/sec. 
        
             
        
        
        
Answer:
y=5/4-10
Step-by-step explanation:
 
        
             
        
        
        
Answer:
The earnings will double
Step-by-step explanation:
Step one:
given data
we are told that the sales person's earnings is 4% of the sales made.
given that the sales made is $37,000 worth of furnaces.
Step two:
we want to find 4% of $37,000
=4/100*37000
=0.04*37000
=1480
hence for $37,000 the earning will be $1480.
Now suppose sales is doubled that is 37000*2= 74000
we want to find 4% of $74,000
=4/100*74000
=0.04*74000
=2960.
the earnings is $2960.
So if sales doubles the earnings will double
 
        
             
        
        
        
1)
here, we do the left-hand-side
![\bf [sin(x)+cos(x)]^2+[sin(x)-cos(x)]^2=2
\\\\\\\
[sin^2(x)+2sin(x)cos(x)+cos^2(x)]\\\\+~ [sin^2(x)-2sin(x)cos(x)+cos^2(x)]
\\\\\\
2sin^2(x)+2cos^2(x)\implies 2[sin^2(x)+cos^2(x)]\implies 2[1]\implies 2](https://tex.z-dn.net/?f=%5Cbf%20%5Bsin%28x%29%2Bcos%28x%29%5D%5E2%2B%5Bsin%28x%29-cos%28x%29%5D%5E2%3D2%0A%5C%5C%5C%5C%5C%5C%5C%0A%5Bsin%5E2%28x%29%2B2sin%28x%29cos%28x%29%2Bcos%5E2%28x%29%5D%5C%5C%5C%5C%2B~%20%5Bsin%5E2%28x%29-2sin%28x%29cos%28x%29%2Bcos%5E2%28x%29%5D%0A%5C%5C%5C%5C%5C%5C%0A2sin%5E2%28x%29%2B2cos%5E2%28x%29%5Cimplies%202%5Bsin%5E2%28x%29%2Bcos%5E2%28x%29%5D%5Cimplies%202%5B1%5D%5Cimplies%202)
2)
here we also do the left-hand-side
![\bf \cfrac{2-cos^2(x)}{sin(x)}=csc(x)+sin(x)
\\\\\\
\cfrac{2-[1-sin^2(x)]}{sin(x)}\implies \cfrac{2-1+sin^2(x)}{sin(x)}\implies \cfrac{1+sin^2(x)}{sin(x)}
\\\\\\
\cfrac{1}{sin(x)}+\cfrac{sin^2(x)}{sin(x)}\implies csc(x)+sin(x)](https://tex.z-dn.net/?f=%5Cbf%20%5Ccfrac%7B2-cos%5E2%28x%29%7D%7Bsin%28x%29%7D%3Dcsc%28x%29%2Bsin%28x%29%0A%5C%5C%5C%5C%5C%5C%0A%5Ccfrac%7B2-%5B1-sin%5E2%28x%29%5D%7D%7Bsin%28x%29%7D%5Cimplies%20%5Ccfrac%7B2-1%2Bsin%5E2%28x%29%7D%7Bsin%28x%29%7D%5Cimplies%20%5Ccfrac%7B1%2Bsin%5E2%28x%29%7D%7Bsin%28x%29%7D%0A%5C%5C%5C%5C%5C%5C%0A%5Ccfrac%7B1%7D%7Bsin%28x%29%7D%2B%5Ccfrac%7Bsin%5E2%28x%29%7D%7Bsin%28x%29%7D%5Cimplies%20csc%28x%29%2Bsin%28x%29)
3)
here, we do the right-hand-side
 
        
             
        
        
        
Answer:
nkvndkfhbkbhjbdhbhbfdhbkxcx
Step-by-step explanation:
vchdksbkfgbkbkhbdhbbhbshbfhklkgfsfg