Answer:
d= 4.079m ≈ 4.1m
Explanation:
calculate the shaft diameter from the torque, \frac{τ}{r} = \frac{T}{J} = \frac{C . ∅}{l}
Where, τ = Torsional stress induced at the outer surface of the shaft (Maximum Shear stress).
r = Radius of the shaft.
T = Twisting Moment or Torque.
J = Polar moment of inertia.
C = Modulus of rigidity for the shaft material.
l = Length of the shaft.
θ = Angle of twist in radians on a length.
Maximum Torque, ζ= τ × \frac{ π}{16} × d³
τ= 60 MPa
ζ= 800 N·m
800 = 60 × \frac{ π}{16} × d³
800= 11.78 × d³
d³= 800 ÷ 11.78
d³= 67.9
d= \sqrt[3]{} 67.9
d= 4.079m ≈ 4.1m
Answer:
M = 281.25 lb*ft
Explanation:
Given
W<em>man</em> = 150 lb
Weight per linear foot of the boat: q = 3 lb/ft
L = 15.00 m
M<em>max</em> = ?
Initially, we have to calculate the Buoyant Force per linear foot (due to the water exerts a uniform distributed load upward on the bottom of the boat):
∑ Fy = 0 (+↑) ⇒ q'*L - W - q*L = 0
⇒ q' = (W + q*L) / L
⇒ q' = (150 lb + 3 lb/ft*15 ft) / 15 ft
⇒ q' = 13 lb/ft (+↑)
The free body diagram of the boat is shown in the pic.
Then, we apply the following equation
q(x) = (13 - 3) = 10 (+↑)
V(x) = ∫q(x) dx = ∫10 dx = 10x (0 ≤ x ≤ 7.5)
M(x) = ∫10x dx = 5x² (0 ≤ x ≤ 7.5)
The maximum internal bending moment occurs when x = 7.5 ft
then
M(7.5) = 5(7.5)² = 281.25 lb*ft
Answer:
In a work site with more than one set of management and workers the Health and safety officers in each set should have access to the information, training and controls needed to avoid workplace accidents
Explanation:
The primary aim of a health and safety officer in a workplace is to prevent accidents,injuries and work-related sickness from occurring in the work site by creating and implementing health and safety policies according to international standards and also ensure that these policies are implemented by the sets of management and workers/staffs of the work site. to achieve these they therefore should have access to the information,training and controls needed to avoid workplace accidents
Answer:
P=11 kW
Explanation:
Given that
Number of poles= 8
I.E.C. 180L motor frame
From data book , for 8 poles motor at 50 Hz
Speed = 730 rpm
Power factor = 0.75
Efficiency at 100 % load= 89.3 %
Efficiency at 50 % load= 89.1 %
Output power = 11 kW
Therefore the rated output power of 8 poles motor will be 11 kW. Thus the answer will be 11 kW.
P=11 kW
Answer:
a) 28 stations
b) Rp = 21.43
E = 0.5
Explanation:
Given:
Average downtime per occurrence = 5.0 min
Probability that leads to downtime, d= 0.01
Total work time, Tc = 39.2 min
a) For the optimum number of stations on the line that will maximize production rate.
Maximizing Rp =minimizing Tp
Tp = Tc + Ftd
At minimum pt. = 0, we have:
dTp/dn = 0
Solving for n²:
The optimum number of stations on the line that will maximize production rate is 28 stations.
b)
Tp = 1.4 +1.4 = 2.8
The production rate, Rp =
The proportion uptime,