1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MArishka [77]
3 years ago
15

Two different fuels are being considered for a 2.5 MW (net output) heat engine which can operate between the highest temperature

produced during the burning of the fuels and an atmospheric temperature of 300 K. Fuel A burns at 2,500 K, delivering 50 MJ/kg (heating value) and costs $2.00/kg. Fuel B burns at 1,500 K, delivering 40 MJ/kg and costs $1.50/kg.
Compare the fuel costs per hour of fuel A and fuel B, assuming that the heat engine operates
(a) at Carnot efficiency
(b) at 40% of Carnot efficiency
Engineering
1 answer:
sveta [45]3 years ago
8 0

Answer:

If the heat engine operates for one hour:

a) the fuel cost at Carnot efficiency for fuel 1 is $409.09 while fuel 2 is $421.88.

b) the fuel cost at 40% of Carnot efficiency for fuel 1 is $1022.73 while fuel 2 is $1054.68.

In both cases the total cost of using fuel 1 is minor, therefore it is recommended to use this fuel over fuel 2. The final observation is that fuel 1 is cheaper.

Explanation:

The Carnot efficiency is obtained as:

\epsilon_{car}=1-\frac{T_c}{T_H}

Where T_c is the atmospheric temperature and T_H is the maximum burn temperature.

For the case (B), the efficiency we will use is:

\epsilon_{b}=0.4\epsilon_{car}

The work done by the engine can be calculated as:

W=\epsilon Q=\epsilon H_v\cdot m_{fuel} where Hv is the heat value.

If the average net power of the engine is work over time, considering a net power of 2.5MW for 1 hour (3600s), we can calculate the mass of fuel used in each case.

m=\frac{P\cdot t}{\epsilon H_v}

If we want to calculate the total fuel cost, we only have to multiply the fuel mass with the cost per kilogram.

TC=m\cdot c

You might be interested in
Which two is right about febuary 14
igor_vitrenko [27]

Answer:A and B

Explanation:

3 0
3 years ago
Read 2 more answers
Water vapor at 6 MPa, 600 degrees C enters a turbine operating at steady state and expands to 10kPa. The mass flow rate is 2 kg/
kirill115 [55]

Answer:

Explanation:

Obtain the following properties at 6MPa and 600°C from the table "Superheated water".

h_1=3658.8KL/Kg\\s_1=7.1693kJ/kg.k

Obtain the following properties at 10kPa from the table "saturated water"

h_{f2}=191.81KJ/Kg.K\\h_{fg2}=2392.1KJ/Kg\\s_{f2}=0.6492KJ/Kg.K\\s_{fg2}=7.4996KJ/Kg.K

Calculate the enthalpy at exit of the turbine using the energy balance equation.

\frac{dE}{dt}=Q-W+m(h_1-h_2)

Since, the process is isentropic process Q=0

0=0-W+m(h_1-h_2)\\h_2=h_1-\frac{W}{m}\\\\h_2=3658.8-\frac{2626}{2}\\\\=2345.8kJ/kg

Use the isentropic relations:

s_1=s_{2s}\\s_1=s_{f2}+x_{2s}s_{fg2}\\7.1693=6492+x_{2s}(7.4996)\\x_{2s}=87

Calculate the enthalpy at isentropic state 2s.

h_{2s}=h_{f2}+x_{2s}.h_{fg2}\\=191.81+0.87(2392.1)\\=2272.937kJ/kg

a.)

Calculate the isentropic turbine efficiency.

\eta_{turbine}=\frac{h_1-h_2}{h_1-h_{2s}}\\\\=\frac{3658.8-2345.8}{3658.8-2272.937}=0.947=94.7%

b.)

Find the quality of the water at state 2

since h_f at 10KPa <h_2<h_g at 10KPa

Therefore, state 2 is in two-phase region.

h_2=h_{f2}+x_2(h_{fg2})\\2345.8=191.81+x_2(2392.1)\\x_2=0.9

Calculate the entropy at state 2.

s_2=s_{f2}+x_2.s_{fg2}\\=0.6492+0.9(7.4996)\\=7.398kJ/Kg.K

Calculate the rate of entropy production.

S=\frac{Q}{T}+m(s_2-s_1)

since, Q = 0

S=m(s_2-s_1)\\=2\frac{kg}{s}(7.398-7.1693)kJ/kg\\=0.4574kW/k

6 0
3 years ago
An electric power plant uses solid waste for fuel in the production of electricity. The cost Y in dollars per hour to produce el
andrew-mc [135]

Answer:

15.64 MW

Explanation:

The computation of value of X that gives maximum profit is shown below:-

Profit = Revenue - Cost

= 15x - 0.2x 2 - 12 - 0.3x - 0.27x 2

= 14.7x - .47x^2 - 12

After solving the above equation we will get maximum differentiate  for profit that is

14.7 - 0.94x = 0

So,

x = 15.64 MW

Therefore for computing the value of X that gives maximum profit we simply solve the above equation.

8 0
3 years ago
Risks in driving never begins with yourself, but with other drivers who take risks.
Ymorist [56]

False! Just saying. You could be under the influence, or just have no clue as to what you're doing.

8 0
2 years ago
Why is the reflection step in the engineering process the most important step?
Monica [59]
Reflection helps designers to learn from their experiences, to integrate and co-ordinate different aspects of a design situation, to judge the progress of the design process, to evaluate interactions with the design context, and to plan suitable future design activities.
6 0
2 years ago
Other questions:
  • What can happen to you if you are in a crash and not wearing a seat belt?<br> Explain.
    13·2 answers
  • A pressure gage at the inlet to a gas compressor indicates that the gage pressure is 40.0 kPa. Atmospheric pressure is 1.01 bar.
    5·1 answer
  • Determine the total condensation rate of water vapor onto the front surface of a vertical plate that is 10 mm high and 1 m in th
    8·2 answers
  • Air at 27°C and a velocity of 5 m/s passes over the small region As (20 mm × 20 mm) on a large surface, which is maintained at T
    6·1 answer
  • Think about the science you have studied in the past or are currently studying. Give an example of something you have learned in
    11·1 answer
  • . H<br> Kijwhayhwbbwyhwbwbwgwwgbwbwhwh
    6·2 answers
  • 2. What is the most obvious elements of design?<br> O color<br> O shape<br> O line<br> O texture
    11·1 answer
  • A driver complains that his front tires are wearing
    14·1 answer
  • 1. Explain the term engine<br>compression​
    10·2 answers
  • Two technicians are discussing relays. Technician A says that relays can fail because the relay winding is open. Technician B sa
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!