1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
serg [7]
2 years ago
15

Csqrt%5B3%5D%7Btanx%7D%20%5Cln%28tanx%29dx" id="TexFormula1" title=" \displaystyle\rm\int \limits_{0}^{ \frac{\pi}{2} } \sqrt[3]{tanx} \ln(tanx)dx" alt=" \displaystyle\rm\int \limits_{0}^{ \frac{\pi}{2} } \sqrt[3]{tanx} \ln(tanx)dx" align="absmiddle" class="latex-formula">​
Mathematics
1 answer:
umka2103 [35]2 years ago
3 0

Replace x\mapsto \tan^{-1}(x) :

\displaystyle \int_0^{\frac\pi2} \sqrt[3]{\tan(x)} \ln(\tan(x)) \, dx = \int_0^\infty \frac{\sqrt[3]{x} \ln(x)}{1+x^2} \, dx

Split the integral at x = 1, and consider the latter one over [1, ∞) in which we replace x\mapsto\frac1x :

\displaystyle \int_1^\infty \frac{\sqrt[3]{x} \ln(x)}{1+x^2} \, dx = \int_0^1 \frac{\ln\left(\frac1x\right)}{\sqrt[3]{x} \left(1+\frac1{x^2}\right)} \frac{dx}{x^2} = - \int_0^1 \frac{\ln(x)}{\sqrt[3]{x} (1+x^2)} \, dx

Then the original integral is equivalent to

\displaystyle \int_0^1 \frac{\ln(x)}{1+x^2} \left(\sqrt[3]{x} - \frac1{\sqrt[3]{x}}\right) \, dx

Recall that for |x| < 1,

\displaystyle \sum_{n=0}^\infty x^n = \frac1{1-x}

so that we can expand the integrand, then interchange the sum and integral to get

\displaystyle \sum_{n=0}^\infty (-1)^n \int_0^1 \left(x^{2n+\frac13} - x^{2n-\frac13}\right) \ln(x) \, dx

Integrate by parts, with

u = \ln(x) \implies du = \dfrac{dx}x

du = \left(x^{2n+\frac13} - x^{2n-\frac13}\right) \, dx \implies u = \dfrac{x^{2n+\frac43}}{2n+\frac43} - \dfrac{x^{2n+\frac23}}{2n+\frac23}

\implies \displaystyle \sum_{n=0}^\infty (-1)^{n+1} \int_0^1 \left(\dfrac{x^{2n+\frac43}}{2n+\frac43} - \dfrac{x^{2n+\frac13}}{2n-\frac13}\right) \, dx \\\\ = \sum_{n=0}^\infty (-1)^{n+1} \left(\frac1{\left(2n+\frac43\right)^2} - \frac1{\left(2n+\frac23\right)^2}\right) \\\\ = \frac94 \sum_{n=0}^\infty (-1)^{n+1} \left(\frac1{(3n+2)^2} - \frac1{(3n+1)^2}\right)

Recall the Fourier series we used in an earlier question [27217075]; if f(x)=\left(x-\frac12\right)^2 where 0 ≤ x ≤ 1 is a periodic function, then

\displaystyle f(x) = \frac1{12} + \frac1{\pi^2} \sum_{n=1}^\infty \frac{\cos(2\pi n x)}{n^2}

\implies \displaystyle f(x) = \frac1{12} + \frac1{\pi^2} \left(\sum_{n=0}^\infty \frac{\cos(2\pi(3n+1)x)}{(3n+1)^2} + \sum_{n=0}^\infty \frac{\cos(2\pi(3n+2)x)}{(3n+2)^2} + \sum_{n=1}^\infty \frac{\cos(2\pi(3n)x)}{(3n)^2}\right)

\implies \displaystyle f(x) = \frac1{12} + \frac1{\pi^2} \left(\sum_{n=0}^\infty \frac{\cos(6\pi n x + 2\pi x)}{(3n+1)^2} + \sum_{n=0}^\infty \frac{\cos(6\pi n x + 4\pi x)}{(3n+2)^2} + \sum_{n=1}^\infty \frac{\cos(6\pi n x)}{(3n)^2}\right)

Evaluate f and its Fourier expansion at x = 1/2 :

\displaystyle 0 = \frac1{12} + \frac1{\pi^2} \left(\sum_{n=0}^\infty \frac{(-1)^{n+1}}{(3n+1)^2} + \sum_{n=0}^\infty \frac{(-1)^n}{(3n+2)^2} + \sum_{n=1}^\infty \frac{(-1)^n}{(3n)^2}\right)

\implies \displaystyle -\frac{\pi^2}{12} - \frac19 \underbrace{\sum_{n=1}^\infty \frac{(-1)^n}{n^2}}_{-\frac{\pi^2}{12}} = - \sum_{n=0}^\infty (-1)^{n+1} \left(\frac1{(3n+2)^2} - \frac1{(3n+1)^2}\right)

\implies \displaystyle \sum_{n=0}^\infty (-1)^{n+1} \left(\frac1{(3n+2)^2} - \frac1{(3n+1)^2}\right) = \frac{2\pi^2}{27}

So, we conclude that

\displaystyle \int_0^{\frac\pi2} \sqrt[3]{\tan(x)} \ln(\tan(x)) \, dx = \frac94 \times \frac{2\pi^2}{27} = \boxed{\frac{\pi^2}6}

You might be interested in
BRAINLIST AND 20 POINTS I REALLY NEED HELP ASAP (10 POINTS FOR EACH QUESTION)
antoniya [11.8K]

Answer:

7 bottles

$10

Step-by-step explanation:

multiply

1/6×42= 7 bottles

5/9×18= $10

8 0
3 years ago
Simplify this expression: 2x³ × 3xy²​
ozzi

Answer:

if we are simplifying, the answer is 6x⁴y²

4 0
2 years ago
Read 2 more answers
From 9pm to 6am the tempeture dropped 1.6 degrees Fahrenheit per hour what was the total change in temperature in degrees Fahren
aalyn [17]
1.6 (degrees) x 9 (hours) = 14.4 degrees
4 0
3 years ago
The mean of a normally distributed dataset is 12, and the standard deviation is 2.
Schach [20]
So lets do it like this:
z = (X-Mean)/SD 
<span>z1 = (8-12)/2 = - 2 </span>
<span>z2 = (16-12)/2 = + 2 </span>
<span>According to the Empirical Rule 68-95-99.7 </span>
<span>Mean more or less 2SD covers 95% of the values </span>
So t<span>he percentage of data points falling between 8 and 16 = 95%
</span>I hope this can help
5 0
3 years ago
Help needed.......................
VladimirAG [237]
C is the answer ... all u has to do was subtract 5 from 12 , then -11-14 , then -13-9
8 0
3 years ago
Read 2 more answers
Other questions:
  • You use 4 gallons of water on 14 plants in your garden. At this rate, how much water will it take to water 35 plants?
    9·2 answers
  • Yoko's fish tank has 17 liters of water in it. She plans to add liters per minute until the tank has at least liters. What are t
    14·1 answer
  • Which algebraic expression is equivalent to the expression below 6(2x+5)+4x
    12·1 answer
  • The sum of two numbers is 12. If one number is subtracted from the other, their difference is -2. Find the numbers
    11·2 answers
  • Need the answwer PLZ
    8·2 answers
  • Simplify a⁵ × (a³)²​
    7·1 answer
  • PLZ HELP IM IN 8TH GRADE
    10·2 answers
  • Find h. 9 ft h 7 ft 15 ft Your answer what is the answer ​
    8·1 answer
  • Please help me with this question
    9·1 answer
  • 2,104.50 divided by 122
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!