1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aliina [53]
2 years ago
11

In your own words describe how to find the area of a composite

Mathematics
1 answer:
Leno4ka [110]2 years ago
5 0

Answer:

answer below

Step-by-step explanation:

A composite figure is made up of simple geometric shapes. To find the area of composite figures and other irregular shaped figures, divide it into simple, non-overlapping figures. Find the area of each simpler figure, and then add them together to find the total area of the composite figure.

You might be interested in
In a popular tale of wizards and witches, a group of them finds themselves in a room with unmarked doors which change position,
SSSSS [86.1K]

Answer:

Expected number of hours before the the group exits the building = E[Number of hours] = 3.2 hours

Step-by-step explanation:

Expected value, E(X) is given as

E(X) = Σ xᵢpᵢ

xᵢ = each variable

pᵢ = probability of each variable

Let X represent the number of hours before exiting the building taking each door. Note that D = Door

D | X | P(X)

1 | 3.0 | 0.2

2 | 3.5 | 0.1

3 | 5.0 | 0.2

4 | 2.5 | 0.5

E(X) = (3×0.2) + (3.5×0.1) + (5×0.2) + (2.5×0.5) = 3.2 hours

Hope this Helps!!!

7 0
2 years ago
Explain how to multiply the following whole numbers 21 x 14
Lesechka [4]

Answer:

\begin{matrix}\space\space&\textbf{2}&\textbf{1}\\ \times \:&1&\textbf{4}\end{matrix}

________

\frac{\begin{matrix}\space\space&\textbf{0}&8&4\\ +&\textbf{2}&1&0\end{matrix}}{\begin{matrix}\space\space&\textbf{2}&9&4\end{matrix}}

Step-by-step explanation:

Given

21\:\times \:14

Line up the numbers

\begin{matrix}\space\space&2&1\\ \times \:&1&4\end{matrix}

Multiply the top number by the bottom number one digit at a time starting with the ones digit left(from right to left right)

Multiply the top number by the bolded digit of the bottom number

\begin{matrix}\space\space&\textbf{2}&\textbf{1}\\ \times \:&1&\textbf{4}\end{matrix}

Multiply the bold numbers:    1×4=4

\frac{\begin{matrix}\space\space&2&\textbf{1}\\ \times \:&1&\textbf{4}\end{matrix}}{\begin{matrix}\space\space&\space\space&4\end{matrix}}

Multiply the bold numbers:    2×4=8

\frac{\begin{matrix}\space\space&\textbf{2}&1\\ \times \:&1&\textbf{4}\end{matrix}}{\begin{matrix}\space\space&8&4\end{matrix}}

Multiply the top number by the bolded digit of the bottom number

\frac{\begin{matrix}\space\space&\textbf{2}&\textbf{1}\\ \times \:&\textbf{1}&4\end{matrix}}{\begin{matrix}\space\space&8&4\end{matrix}}

Multiply the bold numbers:    1×1=1

\frac{\begin{matrix}\space\space&\space\space&2&\textbf{1}\\ \space\space&\times \:&\textbf{1}&4\end{matrix}}{\begin{matrix}\space\space&\space\space&8&4\\ \space\space&\space\space&1&\space\space\end{matrix}}

Multiply the bold numbers:    2×1=2

\frac{\begin{matrix}\space\space&\space\space&\textbf{2}&1\\ \space\space&\times \:&\textbf{1}&4\end{matrix}}{\begin{matrix}\space\space&\space\space&8&4\\ \space\space&2&1&\space\space\end{matrix}}

Add the rows to get the answer. For simplicity, fill in trailing zeros.

\frac{\begin{matrix}\space\space&\space\space&2&1\\ \space\space&\times \:&1&4\end{matrix}}{\begin{matrix}\space\space&0&8&4\\ \space\space&2&1&0\end{matrix}}

adding portion

\begin{matrix}\space\space&0&8&4\\ +&2&1&0\end{matrix}

Add the digits of the right-most column: 4+0=4

\frac{\begin{matrix}\space\space&0&8&\textbf{4}\\ +&2&1&\textbf{0}\end{matrix}}{\begin{matrix}\space\space&\space\space&\space\space&\textbf{4}\end{matrix}}

Add the digits of the right-most column: 8+1=9

\frac{\begin{matrix}\space\space&0&\textbf{8}&4\\ +&2&\textbf{1}&0\end{matrix}}{\begin{matrix}\space\space&\space\space&\textbf{9}&4\end{matrix}}

Add the digits of the right-most column: 0+2=2

\frac{\begin{matrix}\space\space&\textbf{0}&8&4\\ +&\textbf{2}&1&0\end{matrix}}{\begin{matrix}\space\space&\textbf{2}&9&4\end{matrix}}

Therefore,

\begin{matrix}\space\space&\textbf{2}&\textbf{1}\\ \times \:&1&\textbf{4}\end{matrix}

________

\frac{\begin{matrix}\space\space&\textbf{0}&8&4\\ +&\textbf{2}&1&0\end{matrix}}{\begin{matrix}\space\space&\textbf{2}&9&4\end{matrix}}

6 0
3 years ago
Choose the correct Triangle Congruence Theorem
Svetlanka [38]

Answer:

ASA

Step-by-step explanation:

4 0
2 years ago
Read 2 more answers
a number has a 4 in the thousands place the number also has a digit whose value is 10 times the value of the 4 on the thousands
maks197457 [2]
Well I can still answer that question without the following and it will be 44,000
3 0
3 years ago
Drag an answer to each box to complete this paragraph proof.
kramer
1.substitution property
4 0
2 years ago
Other questions:
  • A square has a diagonal length of 5 cm what is the area of a square
    8·2 answers
  • scott started his banking account with $150 and is spending $7 per day on lunch. this situation models which type of function ​
    7·1 answer
  • On his trip,Buddy drove 60 mph for 1 hour, 55 mph for 3 hours and 40 mph for 2 hours. What was the distance of Buddy trip?
    8·2 answers
  • What is the shape of the cross-section formed when a cylinder intersects a
    6·2 answers
  • What number am I
    9·1 answer
  • How many thousands are in 20 hundreds?
    6·1 answer
  • This is a re-write I forgot to add the picture. Math Review. Help need ASAP please!!
    6·1 answer
  • What is greater 145 ounces or 9 pounds.
    11·2 answers
  • How do i start brainly
    12·1 answer
  • Just soleve it and give me the answer
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!