Answer: Hello mate!
A direct variation implies that, if y is the dependent variable that varies with the variable x; then: y = k*x where k is a real number.
An inverse variation has the form y = k/x where also k is a real number.
them, if we define s as the hours that Bob spends studying, and b as the hours that he spends playing baseball, then the equation that represents the score is:
Score(s,b) = k*s/b
we know that if s = 6, and b = 7, then the score is 72; with this information, we could obtain the value of the constant k.
score(6,7) = 72 =k*6/7 = k*
then k = 72*(7/6) = 61.7
now if s = 4 and b = 6, the score that he should expect is:
score( 4, 6) = 61.7*(4/6) = 41
Answer:

Step-by-step explanation:
We want to calculate the right-endpoint approximation (the right Riemann sum) for the function:

On the interval [-1, 1] using five equal rectangles.
Find the width of each rectangle:

List the <em>x-</em>coordinates starting with -1 and ending with 1 with increments of 2/5:
-1, -3/5, -1/5, 1/5, 3/5, 1.
Since we are find the right-hand approximation, we use the five coordinates on the right.
Evaluate the function for each value. This is shown in the table below.
Each area of each rectangle is its area (the <em>y-</em>value) times its width, which is a constant 2/5. Hence, the approximation for the area under the curve of the function <em>f(x)</em> over the interval [-1, 1] using five equal rectangles is:

Answer:
x = 5/2 , y = -7/2
Step-by-step explanation:
<em>r's</em><em> your</em><em> solution</em>
<em> </em><em> </em><em>=</em><em>></em><em> </em><em>formula</em><em> </em><em>for</em><em> </em><em>finding</em><em> </em><em>midpoint</em><em> </em><em>=</em><em>.</em><em>(</em><em> </em><em>X1</em><em> </em><em>+</em><em> </em><em>X</em><em>2/</em><em>)</em><em>/</em><em>2</em><em> </em><em>,</em><em> </em><em>(</em><em>Y1+</em><em>Y2)</em><em>/</em><em>2</em>
<em>=</em><em>></em><em> </em><em>putting</em><em> </em><em>the </em><em>value</em><em> </em><em>of </em><em>in </em><em>formula</em>
<em> </em><em> </em><em>=</em><em>></em><em> </em><em>x=</em><em> </em><em> </em><em>4</em><em>+</em><em>1</em><em>/</em><em>2</em><em> </em><em>,</em><em> </em><em>y </em><em>=</em><em> </em><em>-</em><em>1</em><em>-</em><em>6</em><em>/</em><em>2</em>
<em>=</em><em>></em><em> </em><em>x </em><em>=</em><em> </em><em>5</em><em>/</em><em>2</em><em> </em><em>,</em><em> </em><em>y </em><em>=</em><em> </em><em>-</em><em>7</em><em>/</em><em>2</em>
<em>hope</em><em> it</em><em> helps</em>
Answer:
C(n) = pn
Step-by-step explanation:
Given :
n = time in hours for service call
C = total cost
Total cost = unit cost per hour * time in hours
If unit cost per hour = p
Hence,
C(n) = p * n
C(n) = pn