Answer:
C: Breathe in dangerous fumes
Explanation:
Quality information is an organized set of relevant data that can be used for various purposes.
Quality information is made up of a group of data already supervised and ordered, which serve to build a message based on a certain phenomenon or entity.
- It allows solving problems and making decisions, since its rational use is the basis of knowledge.
- It is a resource that gives meaning to reality, through codes and data sets.
Therefore, we can conclude that quality information is the set of data, already processed and ordered for understanding, that provide new knowledge that can be used for different purposes.
Learn more about quality information here: brainly.com/question/8197747
The entropy change ΔS for the combustion of methane to carbon dioxide and liquid water is -242.6 J/mol.K
<h3>What is the Entropy in a Chemical system?</h3>
In a chemical system, Entropy (ΔS) is a quantitative measure of the variety of possible ways to disperse energy inside a chemical system.
- In an isothermal process, entropy is determined as the quantity of heat transmitted to a system.
The chemical reaction for the combustion of methane can be expressed as:

The standard entropy of the combustion is expressed as:

Replacing the standard entropies of the compounds into the above equation, we have:


Learn more about entropy here:
brainly.com/question/6364271
The concentration of Iron in the galvanic (voltaic) cell Fe(s) + Mn²⁺(aq) ⟶ Fe²⁺(aq) + Mn(s) is 0.02297 M.
<h3>What is the Nernst Equation?</h3>
The Nernst equation enables us to identify the cell potential(voltage) in presence of non-standard conditions in a galvanic cell. It can be expressed by using the formula:
![\mathbf{E_{cell} = E_o - \dfrac{0.059}{n} \times log \dfrac{[Fe^+]}{[Mn^{2+}]}}](https://tex.z-dn.net/?f=%5Cmathbf%7BE_%7Bcell%7D%20%3D%20E_o%20-%20%5Cdfrac%7B0.059%7D%7Bn%7D%20%5Ctimes%20log%20%5Cdfrac%7B%5BFe%5E%2B%5D%7D%7B%5BMn%5E%7B2%2B%7D%5D%7D%7D)
where;
- n = Number of electrons = 2
= Initial voltage = 0.77 V
= Cell voltage = 0.78 V
= Manganese concentration = 0.050 M
Replacing the values into the above equation, we have:
![\mathbf{0.78 = 0.77 - \dfrac{0.059}{2} \times log \dfrac{[Fe^{2+}]}{[0.050]}}](https://tex.z-dn.net/?f=%5Cmathbf%7B0.78%20%3D%200.77%20-%20%5Cdfrac%7B0.059%7D%7B2%7D%20%5Ctimes%20log%20%5Cdfrac%7B%5BFe%5E%7B2%2B%7D%5D%7D%7B%5B0.050%5D%7D%7D)
![\mathbf{0.78 -0.77= -0.0296\times log \dfrac{[Fe^{2+}]}{[0.050]}}](https://tex.z-dn.net/?f=%5Cmathbf%7B0.78%20-0.77%3D%20-0.0296%5Ctimes%20log%20%5Cdfrac%7B%5BFe%5E%7B2%2B%7D%5D%7D%7B%5B0.050%5D%7D%7D)
![\mathbf{log^{-1} (-0.3378) = \dfrac{[Fe^{2+}]}{[0.050]}}](https://tex.z-dn.net/?f=%5Cmathbf%7Blog%5E%7B-1%7D%20%28-0.3378%29%20%3D%20%5Cdfrac%7B%5BFe%5E%7B2%2B%7D%5D%7D%7B%5B0.050%5D%7D%7D)


Learn more about using the Nernst equation here:
brainly.com/question/24258023