This was done from using the method of synthetic division. I attached the image. Hope this helps
The minimum value of a function is the place where the graph has a vertex at its lowest point.
There are two methods for determining the minimum value of a quadratic equation. Each of them can be useful in determining the minimum.
(1) By plotting graph
We can find the minimum value visually by graphing the equation and finding the minimum point on the graph. The y-value of the vertex of the graph will be the minimum.
(2) By solving equation
The second way to find the minimum value comes when we have the equation y = ax² + bx + c.
If our equation is in the form y = ax^2 + bx + c, you can find the minimum by using the equation min = c - b²/4a.
The first step is to determine whether your equation gives a maximum or minimum. This can be done by looking at the x² term.
If this term is positive, the vertex point will be a minimum; if it is negative, the vertex will be a maximum.
After determining that we actually will have a minimum point, use the equation to find it.
Answer:
angle 4 is a full angle because it is represented full 110
Simplify:
5(a + 5) + -3 = 3(2 + -1a)
Reorder the terms:
5(5 + a) + -3 = 3(2 + -1a)
(5 * 5 + a * 5) + -3 = 3(2 + -1a)
(25 + 5a) + -3 = 3(2 + -1a)
Reorder the terms again:
25 + -3 + 5a = 3(2 + -1a)
Combine like terms:
]25 + -3 = 22
22 + 5a = 3(2 + -1a)
22 + 5a = (2 * 3 + -1a * 3)
22 + 5a = (6 + -3a)
Solve:
22 + 5a = 6 + -3a
To solve for variable 'a':
You have to move all terms containing A to the left, all other terms to the right.
Then add '3a' to each side of the equation:
22 + 5a + 3a = 6 + -3a + 3a
Combine like terms:
5a + 3a = 8a
22 + 8a = 6 + -3a + 3a
Combine like terms again:
-3a + 3a = 0
22 + 8a = 6 + 0
22 + 8a = 6
Add '-22' to each side of the equation.:
22 + -22 + 8a = 6 + -22
Combine like terms:
22 + -22 = 0
0 + 8a = 6 + -22
8a = 6 + -22
Combine like terms once more:
6 + -22 = -16
8a = -16
Divide each side by '8'.
a = -2
Simplify:
a = -2
Answer: a=-2
Hope I could help! :)
If your number is smaller than the actual number, you underestimated. If it is larger, you overestimated. Please mark Brainliest!!!